

FooDrugs

A go-to application to research potential food-drug interactions

Enrique Carrillo de Santa Pau

Computational Biology Group

Follow us:

enrique.carrillo@imdea.org

@Imdeaalimenta

IMDEA Food Institute

Focus on Nutrition-Health/Disease interactions at molecular level

Precision Nutrition and Aging Programme

Dr. Manuel Serrano

- Metabolic Syndrome Research Group
 Dr. Pablo Fernández
- Nutritional Interventions Research Group
 Dr. Rafael de Cabo
- Hepatic Regenerative Medicine Research Group
 Dr. Manuel Fernández Rojo
- Posttranscriptional regulation of metabolic diseases Research Group
 Dr. Cristina Ramírez

Precision Nutrition and Cancer Programme

Dr. Ana Ramírez de Molina

- Molecular Oncology Research Group
 Dr. Ana Ramírez de Molina
- Clinical Oncology Research Group
 Dr. Enrique Casado
 and Dr. Jaime Feliú
- Molecular Immunonutrition Research Group
 Dr. Moisés LaParra
- Computational Biology Research Group

 Dr. Enrique Carrillo

Precision Nutrition and Obesity Programme

Dr. Jose María Ordovás

- Nutritional Genomics and Epigenomics Research Group Dr. Jose María Ordovás
- Cardiovascular Nutritional Epidemiology Research Group Dr. Fernando Rodríguez Artalejo
- Nutritional Control of the Epigenome Research Group Dr. Lidia Daimiel

Precision Nutrition and Cardiometabolic Health Programme

Dr. Alfredo Martínez

- Cardiometabolic Nutrition Research Group
 Dr. Alfredo Martínez
- Bioactive Ingredients Food Research Group
 Dr. Francesco Visioli
- Epigenetics of Lipid Metabolism Research Group Dr. Alberto Dávalos

Childhood Precision Nutrition Programme

Dr. Jesús Argente / Dr. Julie Chowen

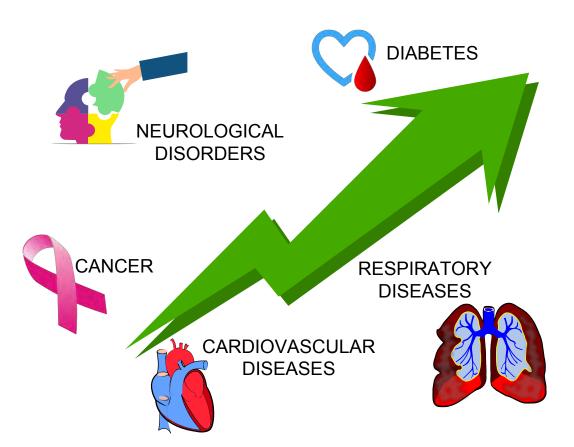
- Childhood Obesity Research Group
 Dr. Jesús Argente
 - and Dr. Julie Chowen

IMDEA Food Institute

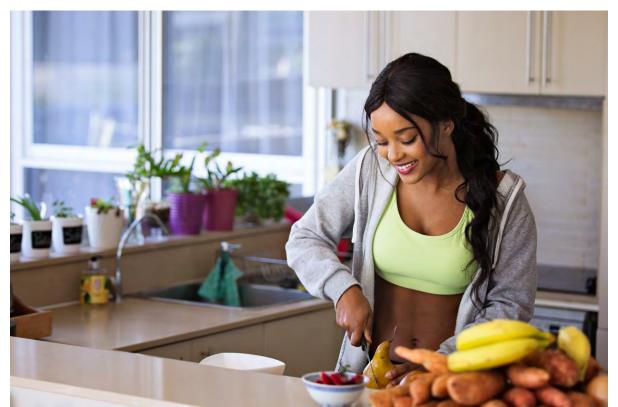
Focus on **Nutrition-Health/Disease** interactions at **molecular** level

FooDrugs

A go-to application to research potential food-drug interactions



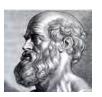
https://imdeafoodcompubio.com/index.php/foodrugs/



«The man first wanted to eat to survive, then he wanted to eat well and incorporated gastronomy into his cultural world. He now, in addition, he wants to eat health » Prof. F. Grande Covian

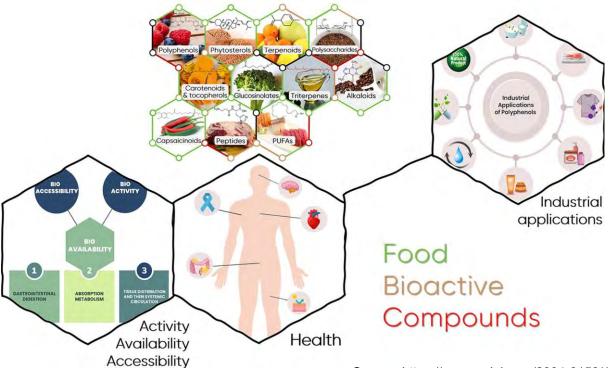
"Let food be the medicine, and let medicine be the food." (attributed to Hippocrates)

Image thanks to Pexels



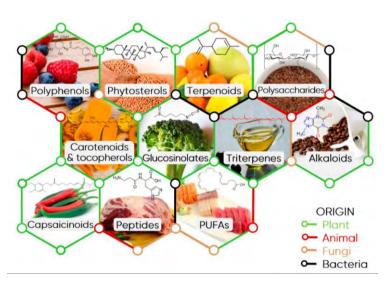
«The man first wanted to eat to survive, then he wanted to eat well and incorporated gastronomy into his cultural world. He now, in addition, he wants to eat health » Prof. F. Grande Covian

"Let food be the medicine, and let medicine be the food." (attributed to Hippocrates)


Photo: gildemax

Food compounds have different mechanisms of action that have an effect on health

Food compounds have different mechanisms of action that have an effect on health


The Health Benefits of **POLYPHENOLS** Boost brain function and protect from neurodegerative Prevent cancer and reduce inflammation Lower blood pressure thus preventing CVDs Stabilize blood sugar levels and exert probiotic action. helping to manage weight Protect the skin from UV radiation and reduce skin aging

Source: https://www.mdpi.com/2304-8158/10/1/37#

Foods can have **negative** effects on drug efficacy...

At the end of the last chemotherapy session for her breast cancer, Isabel Vaquero blurted out, "Now, back home to take my turmeric and the rest of my diet." The oncologist's face changed, and she said, 'Did you know that curcumin inhibits the treatment?' "I felt crushed, i followed a naturalist diet that interfered with my chemotherapy."

Complementary medicine use in cancer patients receiving intravenous antineoplastic treatment

Uso de medicina complementaria en pacientes oncológicos sometidos a tratamiento quimioterápico intravenoso

Regina Juanbeltz^{1,2,3}, María Dolores Pérez-Fernández¹, Bianka Tirapu⁴, Ruth Vera^{3,5}, Susana de la Cruz⁵, María Teresa Sarobe^{1,3}

Farmacia Hospitalaria 2017 | Vol. 41 | N° 5 | 589 - 600 |

- 32.3% of the patients reported complementary medicine use during this period recommended by friends or relatives
- 89% were ingesting products by mouth, herbs and natural products being the most commonly used
- The most used supplement was curcumin, among others

Br J Clin Pharmacol (2018) 84 679-693 679

REVIEW

Critical evaluation of causality assessment of herb-drug interactions in patients

Charles Awortwo^{1,2} , Memela Makiwane², Helmuth Reuter², Christo Muller¹, Johan Louw¹ and Bernd Rosenkranz²

 60% cases with adverse drug reactions are due to herbal supplements

... or **positively** affect drug efficacy.

Phenolic diterpenes from Rosemary supercritical extrac inhibit non-small cell lung cancer lipid metabolism and synergise with therapeutic drugs in the clinic

Adrián Bouzas^{1,2†}, Marta Gómez de Cedrón^{1,2†}, Gonzalo Colmenarejo³, José Moisés Laparra-Llopis⁴, Juan Moreno-Rubio^{1,5}, Juan José Montoya^{2,6}, Guillermo Reglero^{1,7}, Enrique Casado⁵, Beatriz Tabares⁵, María Sereno⁵ and Ana Ramírez de Molina^{1,2†}

Letter | Published: 11 July 2018

Histidine catabolism is a major determinant of methotrexate sensitivity

Naama Kanarek, Heather R. Keys, Jason R. Cantor, Caroline A. Lewis, Sze Ham Chan, Tenzin Kunchok, Monther Abu-Remaileh, Elizaveta Freinkman, Lawrence D. Schweitzer & David M. Sabatini ⊡

Nature 559, 632-636(2018) Cite this article

Fatty acids homeostasis during fasting predicts protection from chemotherapy toxicity

Received: 11 January 2021	
Accepted: 9 September 2022	
Published online: 27 September 2022	
Charlefor undetes	

Marta Barradas ® ^{1,13} □, Adrián Plaza ® ^{1,13} □, Gonzalo Colmenarejo ® ², Iolanda Lázaro ® ³, Luis Filipe Costa-Machado ¹, Roberto Martin-Hernández ², Victor Micó ⁴, José Luis López-Aceituno ¹, Jesús Herranz ², Cristina Pantoja ³, Hector Tejero ⁵, Alberto Diaz-Ruiz ® ⁶, Fatima Al-Shahrour ® ⁵, Lidia Daimiel ® ⁴, Viviana Loria-Kohen ® ⁷, Ana Ramirez de Molina ® ^{7,8}, Alejo Efeyan ® ⁹, Manuel Serrano ® ¹⁰, Oscar J. Pozo ® ¹¹, Aleix Sala-Vila ® ^{3,12} & Pablo J. Fernandez-Marcos ® ¹ □

Problem: No resources about Food-Drug Interactions (FDIs), only about Drug-Drug Interactions (DDIs)

4688 drugs with food interactions. Include food, alcohol, high blood pressure and cholesterol interactions

2290 FDI recommendations from 1262 compounds

138 drugs with FDI, 499 FDI recommendations

87 herbs and natural products, 945 total FDI recommendations

Some DDI resources contain a few FDIs → **Not homogeneous information**

Problem: the knowledge and training of health professionals in known food-drug interactions is unsatisfactory ¹

Questions	Correct answers, N (%)
Amiodarone with grapefruit	179 (59.7)
Atorvastatin with grapefruit	211 (70.3)
Levothyroxine with cauliflower	125 (41.7)
Diazepam with caffeine	134 (44.7)
Coumadin with green vegetables	239 (79.7)
Theophylline with excessive coffee and tea	196 (65.3)
Tetracycline with milk and dairy products	262 (87.3)
MAOI with cheese and fermented food	204 (68.0)
Digoxin with wheat bran	147 (49.0)
Levodopa with protein-rich food	161 (53.7)
Antibiotics with grapefruit juice	198 (66.0)
Spironolactone with potassium rich foods	160 (53.3)

Table 2: Knowledge assessment for pharmacists about food-drug interactions (n = 300)

Zawiah et al., 2020. *PloS One*, *15*(6), e0234779.

1: Benni et al., n.d.; Couris et al., 2000; El Lassy & Ouda, 2019; Enwerem & Okunji, 2015; Osuala et al., 2021; Zawiah et al., 2020

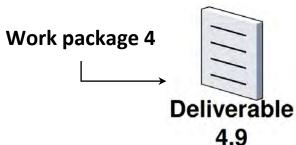
In summary ...

- Increased consumption of foods with an active role to prevent non-communicable diseases¹
- Increased side effects with increasing health cost²
- Information disperse and/or incomplete
- No dedicated system for Food-Drug interactions
- Lack of training³

^{1:} Choi, and Ko. 2017.

^{2:} Topolska, Florkiewicz, and Filipiak-Florkiewicz 2021; Ali, Alam, and Ali 2021; Baker et al. 2022

^{3:}Benni et al., n.d.; Couris et al., 2000; El Lassy & Ouda, 2019; Enwerem & Okunji, 2015; Osuala et al., 2021; Zawiah et al., 2020


FooDrugs

mySQL Database

Molecular component

FooDrugs

Web service

Hostinger cloud service

Work package 5 → Deliverable 5.8

FooDrugs

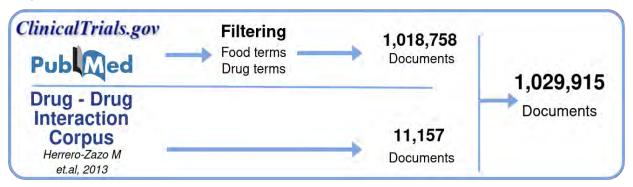
FooDrugs database (July, 2023) includes:

Text Mining component

Number of documents	439,338
Number of potential FDIs	1,108,429
Number of food bioactives	50,960
Number of drugs	161,809

Molecular component

Number of studies	150
Number of samples	3,923
Number of potential positive FDIs	1,759,322
Number of potential negative FDIs	1,590,097
Number of food treatment conditions*	462



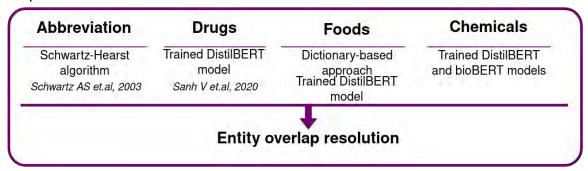
^{*}Each condition is defined as a food or bioactive per time point, concentration, cell line, primary culture or biopsy, and per study.

FooDrugs - Text mining component

A | Data collection

B | Preprocessing

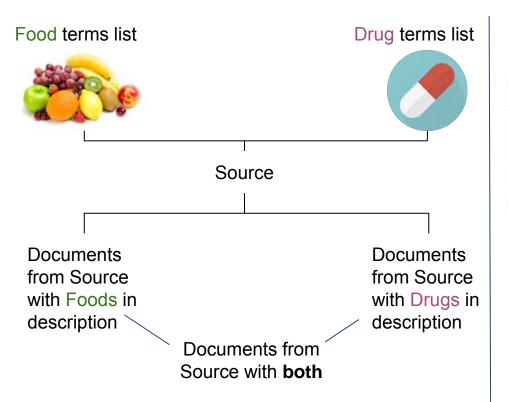
A) Data collection was performed by collecting documents containing at least one food and drug term in their description, as well as the whole DDI corpus. B) Data preprocessing step is applied to the documents for better integration in the pipeline.



FooDrugs - Text mining component

C | Feature Extraction

D | Relationship Extraction


C) In the Feature extraction step, different entities are recognised in the text via different methods, and entity overlap resolution is done when necessary. **D)** Finally, for Relationship extraction, entities are anonymized to work with the relationship extraction model used, and the resulting FDIs and documents are stored in the FooDrugs database.

Foodrugs: TM selection strategy

Example valid document

Resveratrol-loaded core-shell nanostructured delivery systems: Cyclodextrin-based metal-organic nanocapsules prepared by ionic gelation

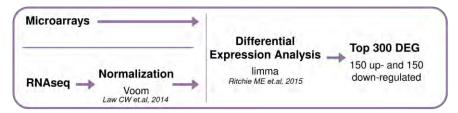
Chao Qiu 1 , David Julian McClements 2 , Zhengyu Jin 1 , Yang Qin 3 , Yao Hu 3 , Xueming Xu 1 , Jinpeng Wang 4

Affiliations + expand

PMID: 32087520 DOI: 10.1016/j.foodchem.2020.126328

... Moreover, the encapsulation efficiency of resveratrol within the nanocapsules increased appreciably after coating them with chitosan (from 66.5 to 91.3%). The chitosan coating was also shown to increase the antioxidant activity and photostability of the encapsulated resveratrol...



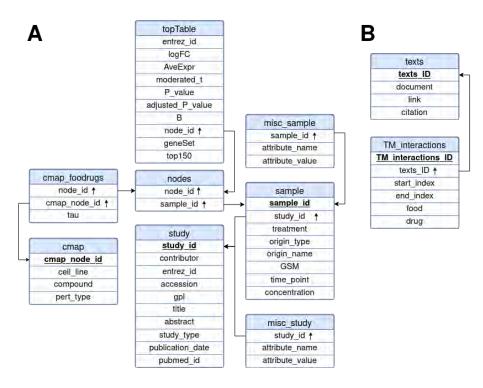

FooDrugs -Molecular component

A | Data collection

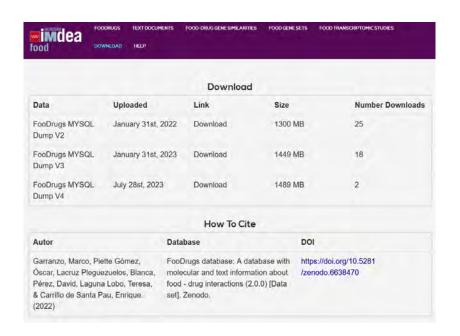
B | Data processing and Differential Expression Analysis

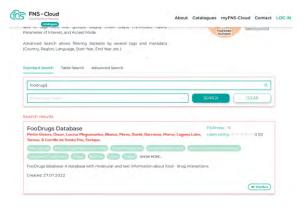
A) Data collection consists of the search of food transcriptomic studies with food keywords. **B)** Data processing is performed and differential expression analysis with limma to get 150 up- and down-regulated genes in food condition vs control. **C)** Genes present in BINGspace sent to CMAP to compute similarity scores with drug transcriptomic profiles.

C | Similarity with CMap profiles

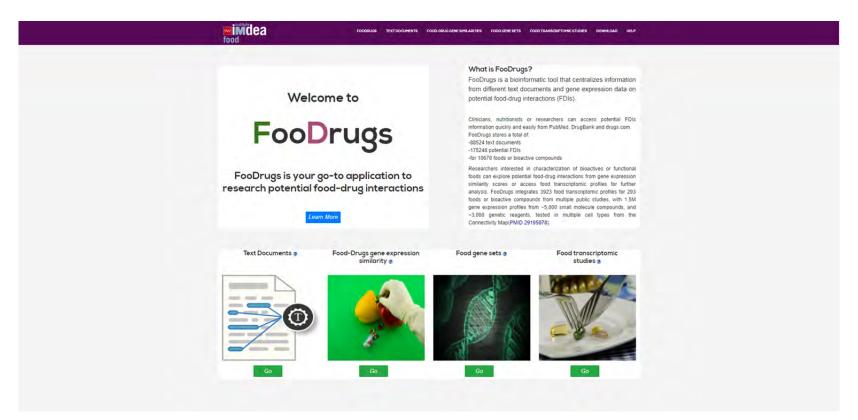


FooDrugs - Database

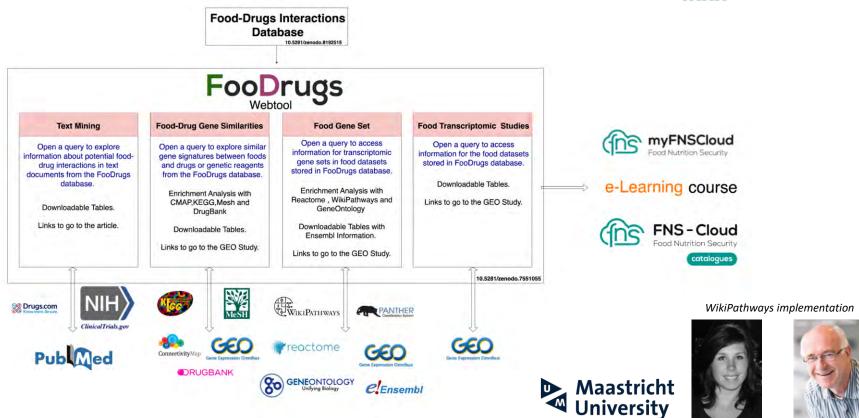

Relational model for the FooDrugs database. Primary keys for each table are marked in bold and underlined. Foreign keys are marked by an arrow pointing upwards. The database is formed by two independent components: **A)** a molecular component, built from GEO studies involving food compounds or bioactives; and **B)** a text mining component, built using NLP.



FooDrugs - Database



Webtool



Webtool

Chris Evelo

Usability Testing

The usability testing was divided in 3 Scenarios

- Scenario 1 for Molecular Researchers
 - -Extensive network of potential interactions from transcriptomic data.
- Scenario 2 for Clinicians & Nutritionists
 - -On food-drug interactions to ensure the correct usage of supplements.
- Scenario 3 for Transcriptomic Researchers
 - -Area of identifying and studying the molecular mechanisms of food-bioactive compounds

Siân Astley

Usability Testing

Interviews for FooDrugs usability testing were carried out in a two step process.

Sassari consortium meeting

-Food and nutrition researchers and IT specialist. 8 Users

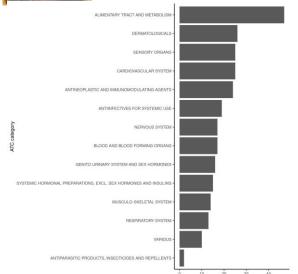
Guided interviews during October 2022

-Mix of experts from differents areas and organizations. 11 Users

FooDrugs Interviews results surveys

System Usability Scale	Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
I would use FooDrugs frequently		3	4	7	4
I found FooDrugs unnecessarily complex	3	9	5	1	
I thought FooDrugs was easy to use		3	5	6	4
I would need support use FooDrugs	6	6	3	1	2
I found the various functions of FooDrugs were well integrated		2	6	8	2
There was too much inconsistency in FooDrugs	3	10	2	2	1
Most people would learn to use FooDrugs quickly		3	2	10	3
I found FooDrugs cumbersome to use	5	8	3	2	
I felt confident using FooDrugs	1	4	6	5	2
I would need to learn a lot of things before I could get going with FooDrugs	3	9	2	4	

User case vitamin D



Jelena Milešević

Classification of drugs found to interact with vitamin D in FooDrugs database, according to ATC classification

Problem:

- Vitamin D, a fat-soluble vitamin essential for maintaining bone health, is a recommended food supplement to reduce risk of fractures in elderly people 1
- However different trials have shown inconsistent results²

Hypothesis:

Different types of drugs can interrupt absorption of vitamin D in the gut, or consume it, as a derivative of cholesterol, causing vitamin D deficiency.

878 texts from different sources, containing 1,146 interactions of vitamin D with 238 drugs

- Bischoff-Ferrari HA, et al., 2005
- Gallagher JC. 2016

E-Learning course

https://www.fns-cloud.eu/foodrugs/#/

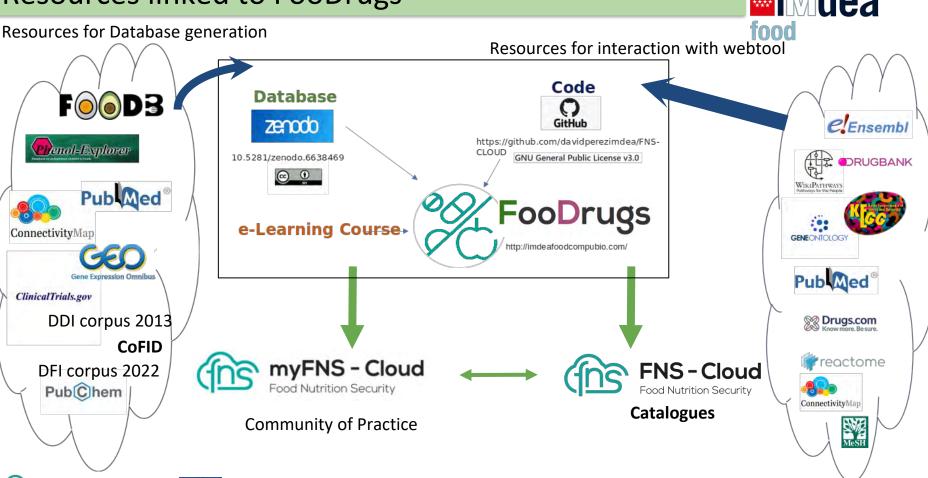
Sections:

- Introduction to Food-Drug interactions
- FooDrugs webtool tutorial

Lowri Harris

Rachel Davies

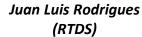
Alice De Angeli


This course aims to introduce and explain the FooDrugs tool.


Developed by: IMDEA Food Institute Authors: David Pérez, Óscar Piette, Marco Garranzo, Blanca Lacruz, Teresa Laguna and Enrique Carrillo.

Resources linked to FooDrugs

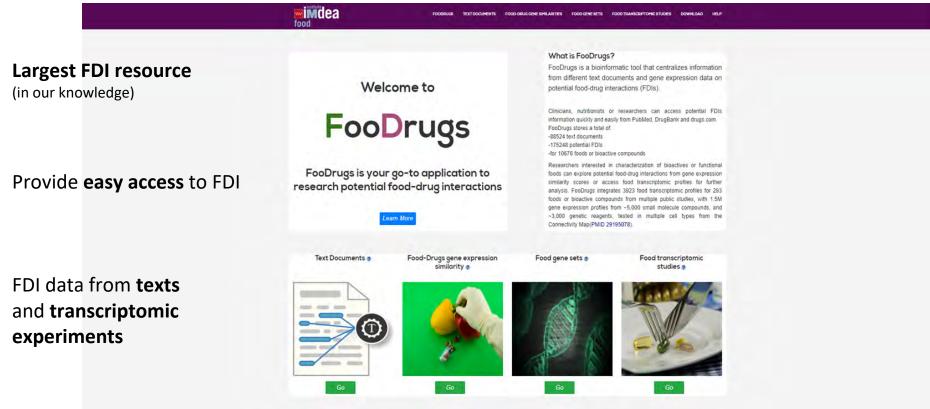
Resources generated from FooDrugs



- FooDrugs database (Creative commons license)
- FooDrugs Web page (Free Access)
- Code to generate resource (GNU)
- E-Learning course (Free Access)

Javier de la Cueva

Dissemination


IMPACT OF NUTRITION
DURING DIFFERENT LIFE STAGES
TRACING THE IMPACT OF DIFT ON HUMAN HEALTH

Final summary

Final summary

- Valuable Resource for Researchers and Clinicians: FooDrugs addresses the pressing need for a centralized repository of FDI information. This resource offers researchers and clinicians a convenient and free platform to access critical data, facilitating their investigation of potential FDIs and enabling personalized dietary recommendations for patients based on their medication regimen.
- I think that these resources collectively present a relevant tool for researchers working in the field

Acknowledgements

institute dea food

Computational biology group

Former members

Acknowledgements

FNS-Cloud

Siân Astley

Hana Musinovic Javier de

la Cueva

Susan Coort Chris Evelo

Rachel **Davies**

Alice De Angeli

Lowri Harris **Annette** Fillery-Travis

Rodrigues

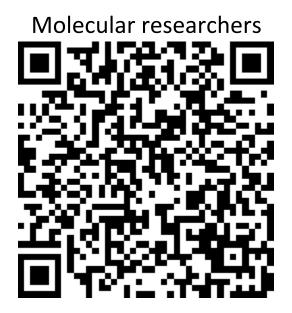
Juan Luis Jelena Milešević

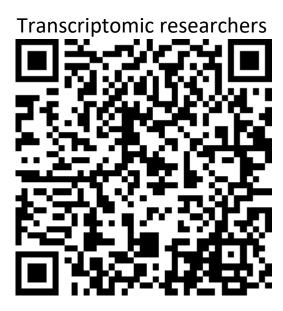
Questions?

FooDrugs

A go-to application to research potential food-drug interactions

https://imdeafoodcompubio.com/index.php/foodrugs/


User cases with survey monkey


http://imdeafoodcompubio.com/

https://www.surveymonkey.co.uk/r/ CJWJ3PS

https://www.surveymonkey.co.uk/r/CJHQCXM

https://www.surveymonkey.co.uk/r /CQMBNDD

FooDrugs

A go-to application to research potential food-drug interactions

Enrique Carrillo de Santa Pau

Computational Biology Group

Follow us:

enrique.carrillo@imdea.org

@Imdeaalimenta

