

# Food Traceability & Metrology search engine

Claudia Zoani & Emilia Pucci (ENEA)

Anna Zolynia, Joanna Czach, Kamil Kubala, Wiktor Kapela, Oskar Chajdas, Zbigniew Waligorski, Alicja Orzel, Michal Faciszewski, Katarzyna Motyka & Karl Presser (PMT)

Maria Z. Tsimidou & Nikolaos Nenadis (AUTH)

Katherine Flynn, Luis Mayor & Sofia Reis (IFA)

FNS-Cloud Final Event & Launch of
FNSCloud Solution
Brussels - 12 Sept. 2023

## **AGENDA**

☐ Key role of data for food quality, safety, and authenticity

Claudia Zoani – ENEA

■ Search challenges and issues with search engines

Karl Presser – PMT

☐ Provision of analytical data for the traceability search engine: an example on olive oil *Maria Tsimidou – AUTH* 

☐ Intro to the Food traceability & metrology search engine

Katherine Flynn, Luis Mayor

☐ Hands-on session: what can I do with search engine?

& Sofia Reis - IFA, with ENEA

& PMT

☐ Further developments and engaging user communities

Claudia Zoani - ENEA; Karl Presser - PMT





## Who worked to realize the Food Traceability & Metrology search engine

















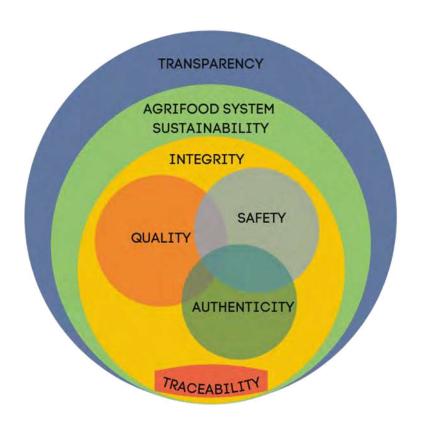


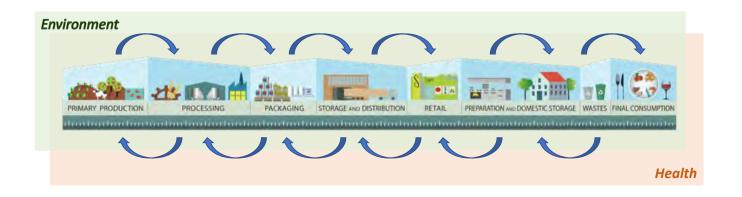








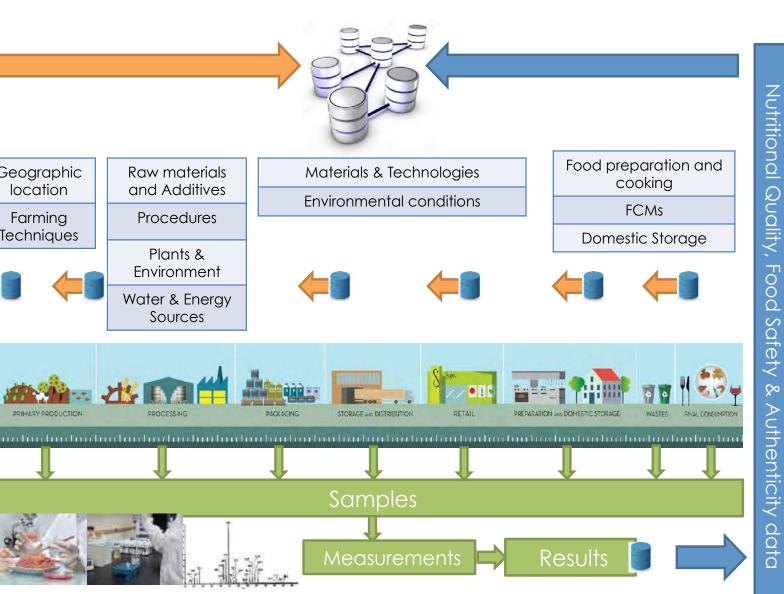




...and all the consortium members who provided the datasets and tested the tool suggesting improvements





## Why the engine?







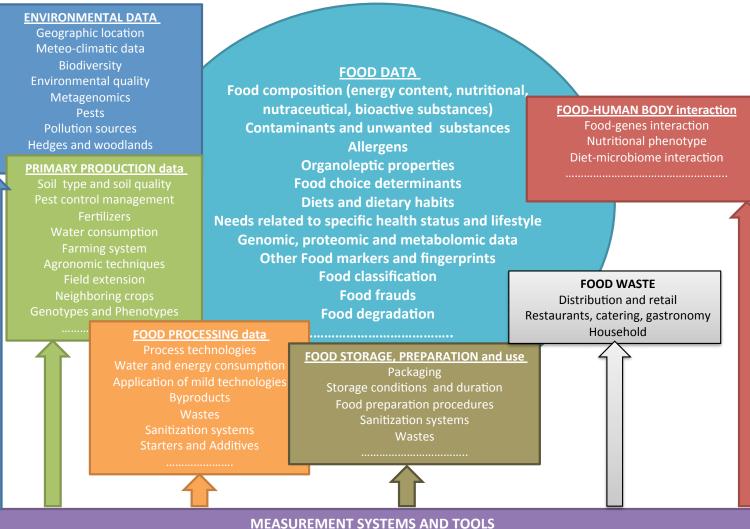












Geographic

location

Farming

**Techniques** 

PRIMARY PRODUCTION



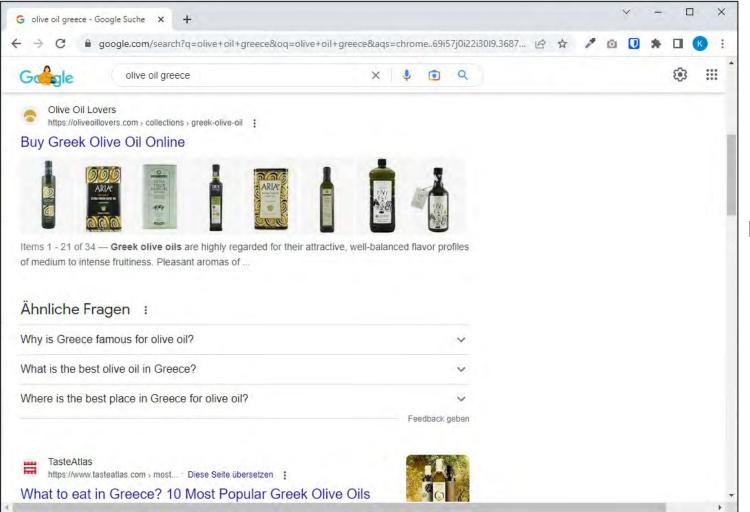
#### THE VISION is:

to realise a system enabling to collect and made interoperable information, data and metadata related to the Food in all its lifecycle, so as to reach a system able to describe the food on its whole and at the same time relate those characteristics to the influencing factors (collected as well as metadata).



Need to start from data FINDABILITY




**SEARCH ENGINE** 

Analytical techniques, Sensors, Official methods Primary measurement standard, Reference Materials, Computational and statistical analysis, databases and bioinformatic tools

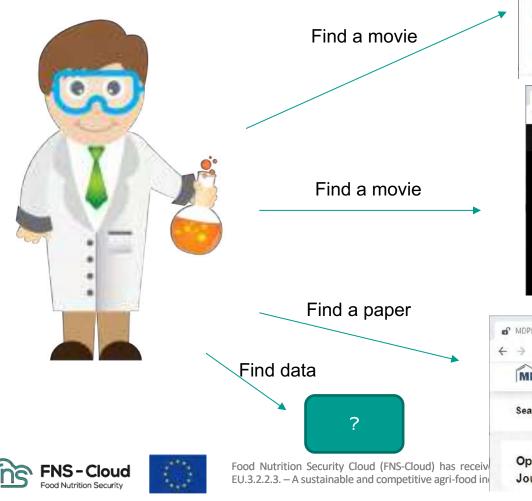


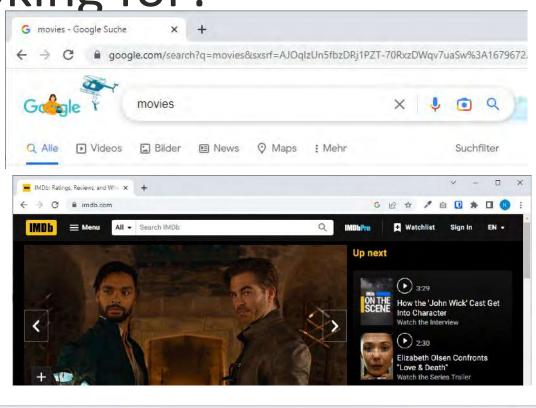


## Motivation: Issues with Search Engines



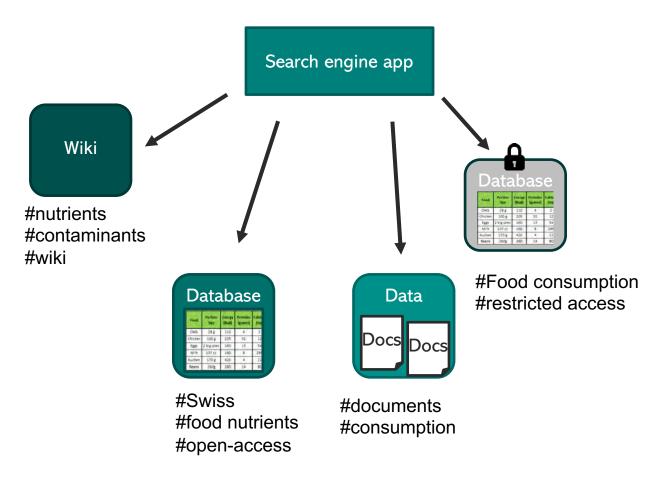
- With Google you can find websites with relevant content
- Google presents results as a list


#### Issues:


- Are all relevant website shown?
- results are not appropriate to search scientific data
- No metainformation is used
- no structured data
- Not data but webpages are shown





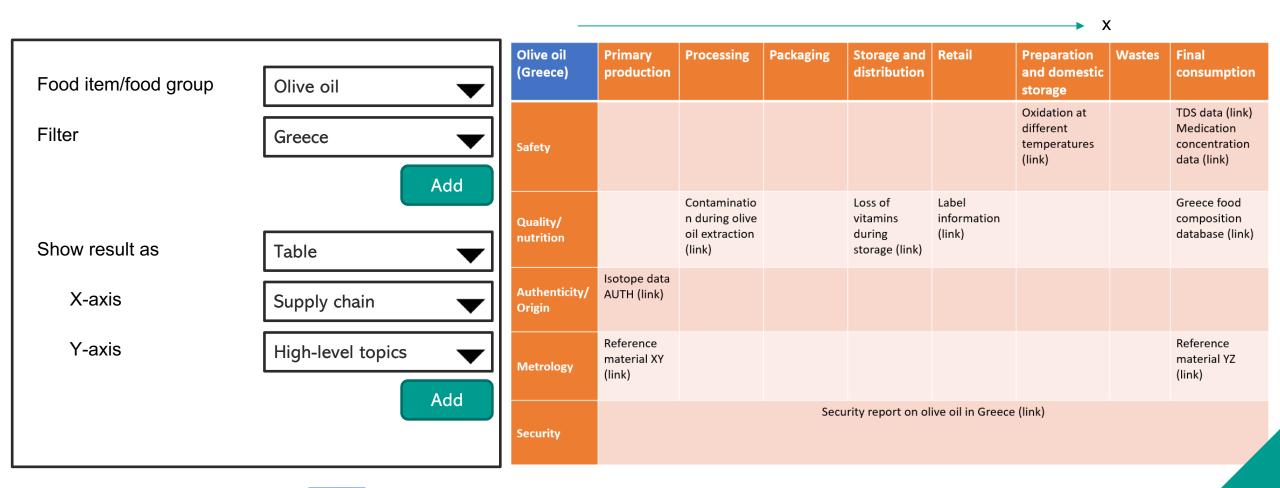

What is a researcher looking for?







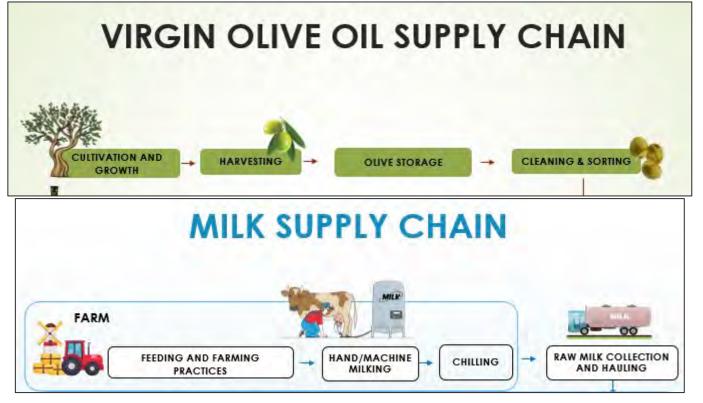
## Concept 1: Broad Search and Tagging



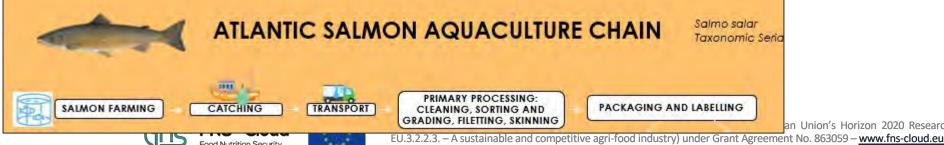

- Implement a search engine tailored for scientific food data
- Allow to tag datasets and use tagging for search
- Search databases, but also Wiki and Docs






## Concept 2: Show Result Map/Spaces







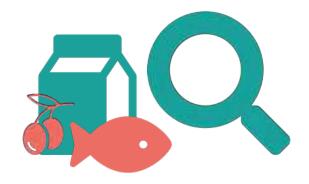

## Concept 3: Food Supply Chains

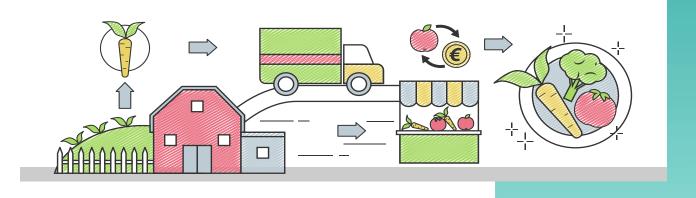


- Food supply chains are different foods and food groups
- Search engine should reflect that
- Search engine should graphically support with food supply chains

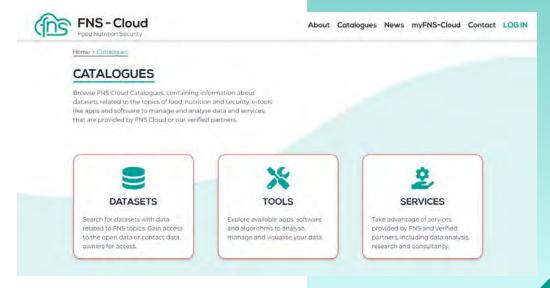


## Concept 4: Parameters of interest


| SAFETY                     |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                            |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MATRIX                     |                                                                                                                                                                                                                                                                                                                                        | RAW MILK                                                                                                                                                                                                                                                                                                                                   |
| STEP                       | FEEDING AND FARMING PRACTICES                                                                                                                                                                                                                                                                                                          | HAND/MACHINE MILKING                                                                                                                                                                                                                                                                                                                       |
| PARAMETERS OF<br>INTEREST  | brominated flame retardants, PAHs, organochlorines, perfluorinated substances, dioxins, antibiotic residues, antiparasitic drugs, painkillers, other drugs (Chloramphenicol), toxic and potentially toxic elements; pathogenic and spoilage organisms (E. Coli), spores of butyric acid bacteria, mycotoxins, viruses; foreign matters | disinfectants (iodine, quaternary ammonium compound (QAC) residues, TCM residues and chlorinated byproducts), phthalate esters; total bacteria, somatic cells, pathogenic and spoilage organisms (Staphylococcus aureus, E. coli, mastitis bacteria); foreign matters (metal, plastic, glass, rubber, wood parts, sand/soil, stones, hair) |
| PARAMETERS OF<br>INFLUENCE | climatic and pedoclimatic conditions, feed<br>composition, contaminants on feed and water,<br>fertilisers content and type, pest and disease<br>management, cow health status, veterinary<br>medicines                                                                                                                                 | cleaning procedures efficiency (environment, animals, operators); integrity of food contact materials (FCM)                                                                                                                                                                                                                                |


- 3 areas: nutritional quality, safety, authenticity/transparency
- Parameter of interest = chemical substance/bacteria
- Define for each supply chain the parameters of interest
- Parameters of influence






Develop a search tool utilising
existing and emerging FNS data from
multiple sources to enable better
visualization and understanding of
the composition, organoleptic
properties, chemical characteristics,
origins, etc. of three model foods
(milk, fish and olive oil)









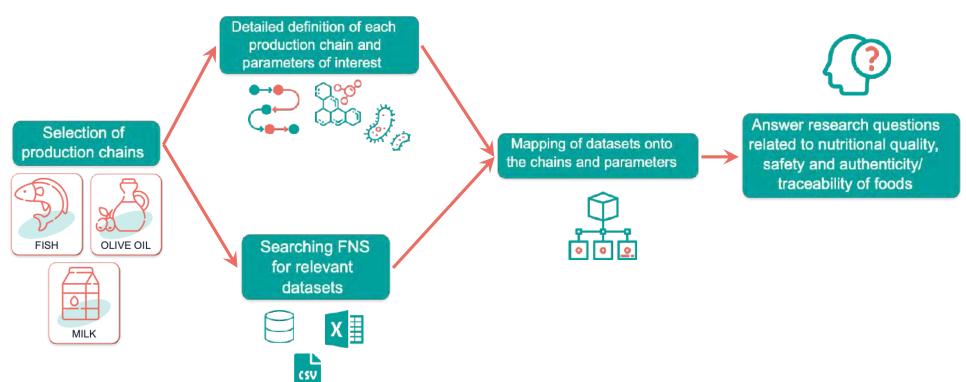


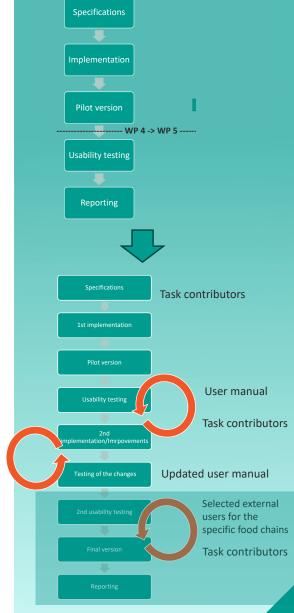


## Reseach questions and topics

Nutritional quality

Food safety


Traceability/ Authenticity


- Food composition
- Nutritional quality (e.g., nutrients, bioactive compounds; comparison among raw and pasteurised milk)
- Food safety contaminants ad unwanted substances (e.g., contaminant concentration in the raw material, final product and/or process intermediates)
- Authenticity; geographical or botanical/zoological origin (markers and profiles); suspect food samples compared against authentic profiles to confirm or refute claims about origin or ingredients
- Primary production and processing (e.g., fishing and aquaculture)
- 0 ...





## Workflow









## Supply chain selection

Virgin Olive oil; Milk, Fishery products (Atlantic salmon, common sole, European anchovy)

Supply chain analysis & representation

Flowchart: from primary production to human intake; Steps list: definition, input and output; Official definitions where applicable

Data and metadata mapping

Every supply chain step was examined to understand how it affects nutritional quality, safety and authenticity so to define the relevant parameters of interest and parameters of influence

Tagging of the FNS catalogues

Definition of the tags for each search criterion, preliminary tagging for the usability tests, refinement of the criteria, completion of the tagging for all the FNS datasets

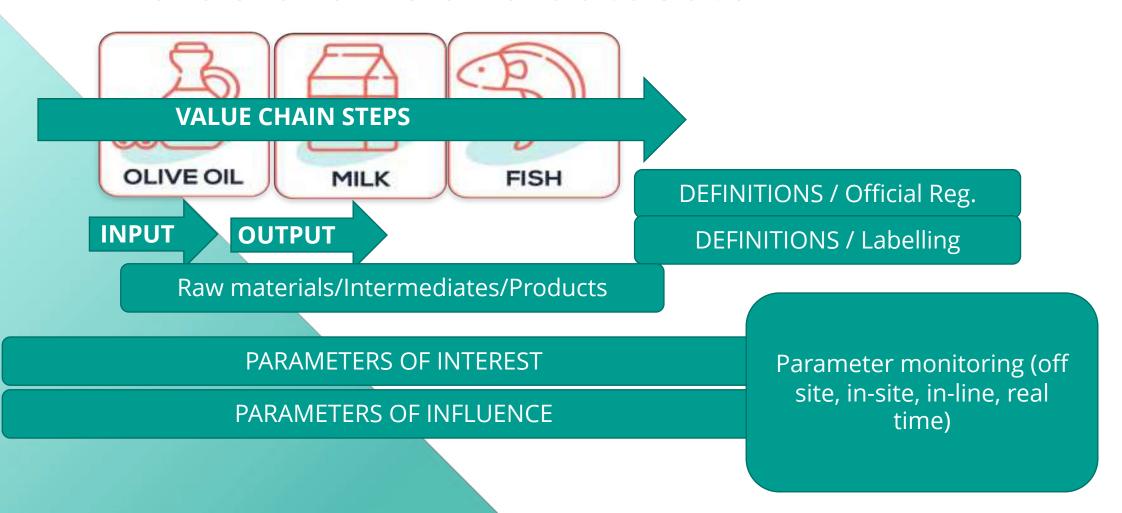




## Three model foods



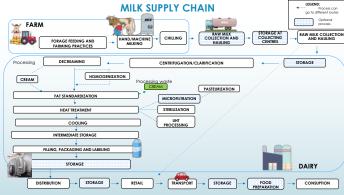
- Olive oil authenticity, quality, sustainability
- Milk quality, by-products, sustainability
- Fish quality, safety, authenticity


#### **Selection criteria:**

- products of both vegetable and animal origin
- products of interest for different Countries/geographic areas in Europe, taking into account also trade
- > possibility to extend the case studies to further products obtained by their processing
- current availability of datasets in the frame of other networks/projects/initiatives and possibility to involve in the Consortium and the Stakeholder Platform these networks and partners

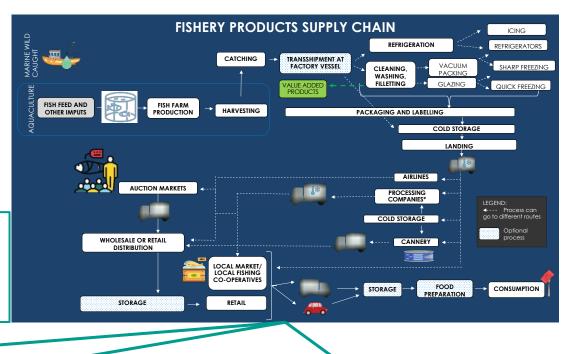


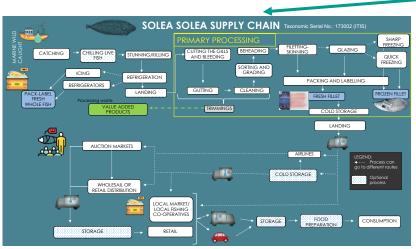


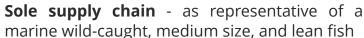

## Value chains and datasets

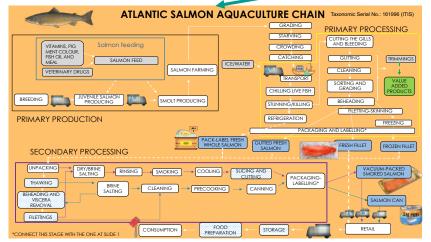




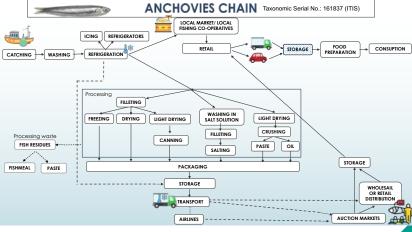




#### Fishery products chain (fish, crustaceans, cuttlefish, etc.)

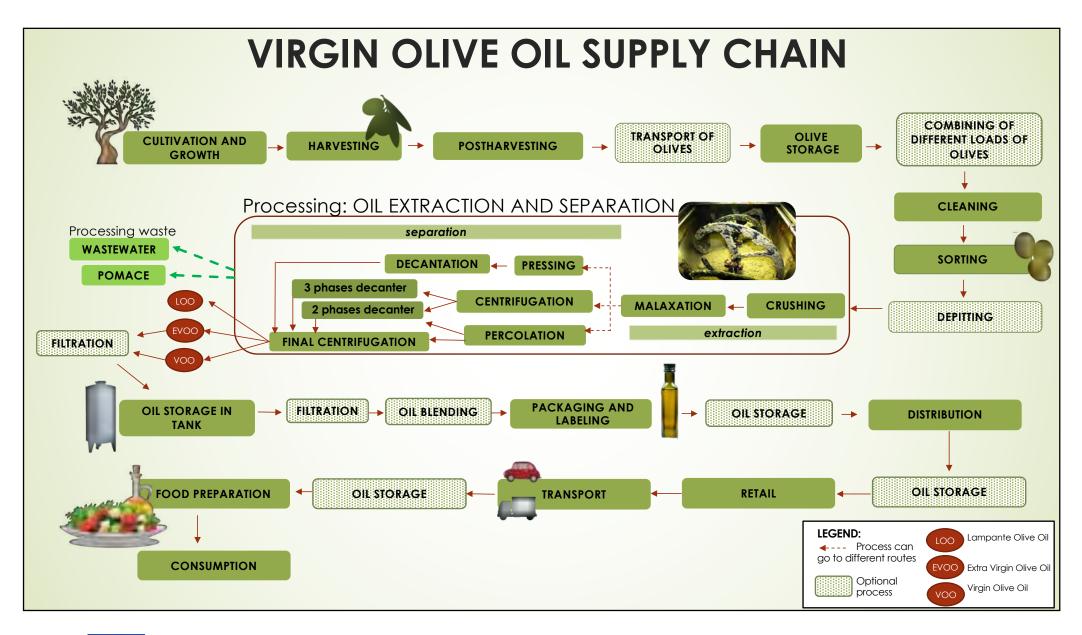
Reg. (EC) 853/2004 (EU, 2004) - all seawater or freshwater animals (except for live bivalve molluscs, live echinoderms, live tunicates and live marine gastropods, and all mammals, reptiles and frogs) whether wild or farmed and including all edible forms, parts and products of such animals.











**Salmon supply chain** - as representative of the aquaculture line, large size, and fatty fish

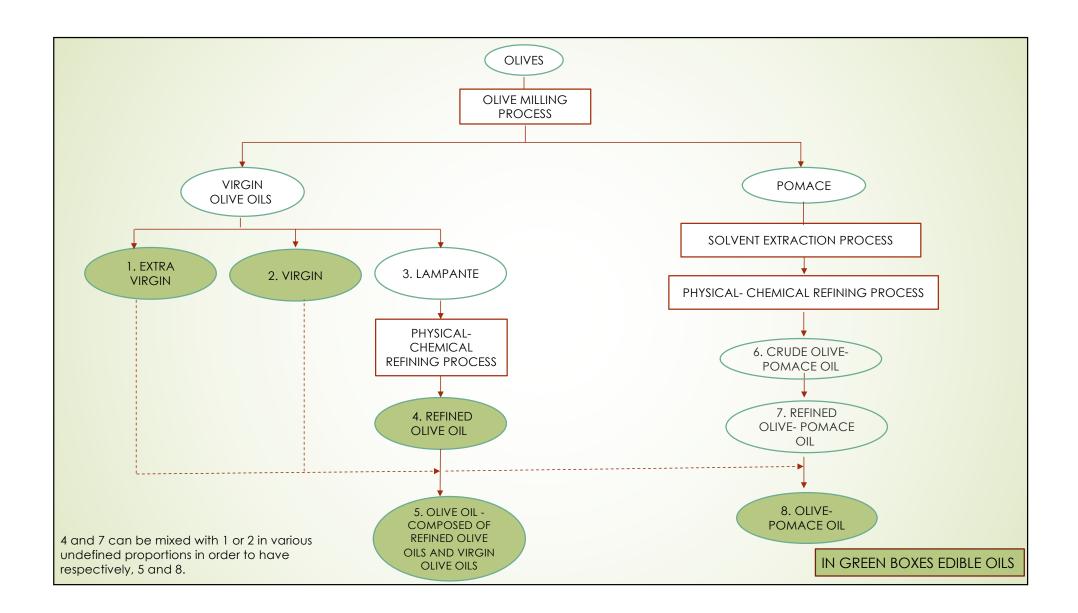


**Anchovies supply chain** - as representative of a marine wild-caught, small size, medium fat fish












| STEP                                | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                         | INPUT                                                                       | OUTPUT AND MATRIX OF ANALYSIS                                 |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|--|
| CULTIVATION AND GROWTH              | All stages that concern agronomic practices to make olives growth and keep them healthy until harvest                                                                                                                                                                                                                                                                                                                                                              | х                                                                           | OLIVES                                                        |  |
| HARVESTING                          | The process of gathering a ripe crop from olives fields. Can be done after natural fall; by hand, by beating the branches, with shakers, by combing (previously is commonly used to punt canvases on the soil for the reception of the harvested fruits)                                                                                                                                                                                                           | OLIVES                                                                      | OLIVES                                                        |  |
| POSTHARVESTING                      | Olives are taken from the nets on the ground and put into bins                                                                                                                                                                                                                                                                                                                                                                                                     | OLIVES                                                                      | OLIVES                                                        |  |
| TRANSPORT OF OLIVES                 | Olives are transported to oil mill by olive grower                                                                                                                                                                                                                                                                                                                                                                                                                 | OLIVES                                                                      | OLIVES                                                        |  |
| OLIVE STORAGE                       | Olives are stored in rigid and ventilated containers in a cool and dry environment                                                                                                                                                                                                                                                                                                                                                                                 | OLIVES                                                                      | OLIVES                                                        |  |
| COMBINING DIFFERENT LOADS OF OLIVES | Olives can arrive from different olive's growers and are mixed together                                                                                                                                                                                                                                                                                                                                                                                            | OLIVES                                                                      | OLIVES                                                        |  |
| CLEANING                            | Involves defoliation and washing                                                                                                                                                                                                                                                                                                                                                                                                                                   | OLIVES                                                                      | OLIVES                                                        |  |
| SORTING                             | Discarding any bruised or defective fruit                                                                                                                                                                                                                                                                                                                                                                                                                          | OLIVES                                                                      | OLIVES                                                        |  |
| DEPITTING                           | Separation of the pits from the olives                                                                                                                                                                                                                                                                                                                                                                                                                             | OLIVES                                                                      | OLIVES                                                        |  |
| extraction                          | Preparation of the paste. The ideal objective of any extraction method is to extract the largest possible amount of oil without altering its original quality                                                                                                                                                                                                                                                                                                      | OLIVES                                                                      | OLIVE PASTE                                                   |  |
| CRUSHING                            | Crushing of olives. The purpose is to disrupt the tissues of the fruit and facilitate release of oil from oil bodies. This step can be done with stone mills, metal tooth grinders, or various kinds of hammermills                                                                                                                                                                                                                                                | OLIVES                                                                      | OLIVE PASTE (oil-in-water emulsion)                           |  |
| MALAXATION                          | Mixing of olive paste that allows small oil droplets to combine into larger ones                                                                                                                                                                                                                                                                                                                                                                                   | OLIVE PASTE (oil-in-water emulsion)                                         | OLIVE PASTE (Water-in-oil emulsion)                           |  |
| separation                          | Separation of olive paste in its components: oil, pomace (solid remains of olive) and vegetation water. It can be obtained with three system: - by pressing, - by centrifugation, - by percolation through selective filtration                                                                                                                                                                                                                                    | OLIVE PASTE (Water-in-oil emulsion)                                         | OLIVE OIL, OLIVE POMACE,<br>VEGETATION WATER                  |  |
| PRESSING                            | Pressing is carried out with hydraulic electric pumps, cage and column press ore open monobloc super presses that allow reaching pressures of 350-500 atmospheres                                                                                                                                                                                                                                                                                                  | OLIVE PASTE (Water-in-oil emulsion)                                         | OLIVE MUST (OIL + VEG. WATER),<br>OLIVE POMACE                |  |
| DECANTATION                         | Separation of olive oil from water by natural decantation (is the most old method to preserve product); it followed by pouring                                                                                                                                                                                                                                                                                                                                     | OLIVE POMACE, VEG.<br>WATER, OLIVE PASTE                                    | VIRGIN OLIVE OIL, VEG. WATER                                  |  |
| PERCOLATION                         | Percolation is based on the difference in the surface tension between oil and vegetation water. Olive oil percolate goes to centrifuge and in some milling paste goes to 2 phase decanter to recover oil still present                                                                                                                                                                                                                                             | OLIVE PASTE (Water-in-oil emulsion)                                         | OLIVE OIL, OLIVE POMACE OIL                                   |  |
| CENTRIFUGATION                      | It is based on the differences in density of the olive paste constituents (olive oil, water and insoluble solids). The olive paste is subjected to centrifugation in a conical rotating drum with a horizontal axis called DECANTER where Liquid-Solid Separation takes place                                                                                                                                                                                      | OLIVE PASTE (water-in-oil<br>emulsion) + ADDED WATER<br>IN THE 3 PHASE DEC. | OLIVE OIL, VEG. WATER, OLIVE<br>POMACE OR OLIVE OIL AND HUMID |  |
| 2 AND 3 PHASES DECANTERS            | In the three-phase centrifugal decanter, paste is divided into oil, vegetation water and solids (olive pomace), i.e. kernel and pulp fragments During the path to the three-phase centrifugal decanter, water is added to dilute the incoming paste. In the two-phase process, paste instead is separated in oil as a liquid phase and a solid phase composed of fragments and kernels, pulp and vegetation water (humid olive pomace)                             | IN THE 3 PHASE DEC.                                                         | OLIVE POMACE                                                  |  |
| FINAL CENTRIFUGATION                | Split olive oil from the other materials. Regardless of the process used for oil extraction, a final centrifugation with lukewarm water is performed to further remove water and small solids from the oil. Output is cleaned oil with less than 0.2% of moisture and volatile matter (% w/w), and less than 0.1% of insoluble impurities in light petroleum (% w/w) This process is carried out in vertical centrifuges that rotate at high speed (6000-7000 rpm) | OLIVE OIL + WATER                                                           | VIRGIN OLIVE OIL AND OILY<br>DEPOSIT                          |  |
| PROCESSING WASTE                    | The by-products are olive mill wastewater (OMW) and/or olive-pomace and, and less importantly, twigs and leaves. The vegetation water can be used in agronomic, energy and industry fields. Olive-pomace can be transformed into olive-pomace oil, biofuel, compost, animal feed, biodiesel, polysaccharides, antioxidants, ceramic materials, etc.                                                                                                                | WASTEWATER, OLIVE<br>POMACE                                                 | OLIVE-POMACE OIL, AND OTHER                                   |  |
| FILTRATION                          | It is aimed at making the oil clearer and protecting it from premature ageing. Is carried out in two steps: first, the suspended solids are re-moved, and second elimination of humidity gives the oil brilliant aspect. It can be carried out with press filters or spontaneous leaving the product at rest by the action of the force of gravity                                                                                                                 | OLIVE OIL                                                                   | FILTERED VOO                                                  |  |
| OIL STORAGE                         | At industry keeping oil in sealed stainless steel tanks, with nitrogen blanketing at 15-18 °C. Other processes store oil in bottles or tin cans (or any other appropriated containers) at 15-18 °C                                                                                                                                                                                                                                                                 | voo                                                                         | voo                                                           |  |
| OIL BLENDING                        | Mixing virgin olive oils obtained from different olive varieties to create own unique blend                                                                                                                                                                                                                                                                                                                                                                        | VOOs                                                                        | BLEND -MULTI VARIETAL VOO                                     |  |
| PACKAGING AND LABELING              | Edible Virgin Olive Oil is put into bottles or tin cans and labelled                                                                                                                                                                                                                                                                                                                                                                                               | EDIBLE VOO                                                                  | VOO PACKED & LABELED                                          |  |
| DISTRIBUTION                        | Distribution of bottles or fin cans tanks using trucks or cargo through various channels to reach the final consumer. These channels are either retailing companies or other processing companies (for ex. canteen or restaurants)                                                                                                                                                                                                                                 | VOO PACKED & LAB.                                                           | VOO PACKED & LABELED                                          |  |
| RETAIL                              | Process that showcases the product for the consumer. This can be in the form of local corner shops or large hypermarkets or supermarkets                                                                                                                                                                                                                                                                                                                           | VOO PACKED & LAB.                                                           | VOO PACKED & LAB.                                             |  |
| TRANSPORT                           | Bringing the item purchased at home/at restaurant                                                                                                                                                                                                                                                                                                                                                                                                                  | VOO PACKED & LAB.                                                           | VOO PACKED & LAB.                                             |  |
| STORAGE                             | Storage at home or in restaurants, canteens, in clear and dark containers                                                                                                                                                                                                                                                                                                                                                                                          | VOO PACKED & LAB.                                                           | VOO PACKED & LAB.                                             |  |
| FOOD PREPARATION                    | Using the oil in food recipes                                                                                                                                                                                                                                                                                                                                                                                                                                      | VOO PACKED & LAB.                                                           | VOO READY TO EAT                                              |  |











### **DEFINITIONS**

#### **VIRGIN OLIVE OILS**

Oils obtained from the fruit of the olive tree solely by mechanical or other physical means under conditions that do not lead to alterations in the oil, which have not undergone any treatment other than washing, decantation, centrifugation or filtration, to the exclusion of oils obtained using solvents or using adjuvants having a chemical or biochemical action, or by re-esterification process and any mixture with oils of other kinds.

Classified as follows:



#### 1. EXTRA VIRGIN OLIVE OIL

Virgin olive oil having a maximum free acidity, in terms of oleic acid, of 0,8 g per 100 g, the other characteristics of which comply with those laid down by the Commission [...] for this category.



#### 2. VIRGIN OLIVE OIL

Virgin olive oil having a maximum free acidity, in terms of oleic acid, of 2 g per 100 g, the other characteristics of which comply with those laid down by the Commission [...] for this category.



#### 3. LAMPANTE OLIVE OIL

Virgin olive oil having a free acidity in terms of oleic acid, of more than 2 g per 100 g, and/or the other characteristics of which comply with those laid down by the Commission [...] for this category.



#### 4. REFINED OLIVE OIL

Olive oil obtained by refining virgin olive oil, having a free acidity content expressed as oleic acid, of not more than 0,3 g per 100 g, and the other characteristics of which comply with those laid down by the Commission [...] for this category.



#### 7. REFINED OLIVE-POMACE OIL

Oil obtained by refining crude olive-pomace oil, having free acidity content expressed as oleic acid, of not more than 0,3 g per 100 g, and the other characteristics of which comply with those laid down by the Commission [...] for this category.



### 5. OLIVE OIL - COMPOSED OF REFINED OLIVE OILS AND VIRGIN OLIVE OILS

Olive oil obtained by blending refined olive oil and virgin olive oil other than lampante olive oil, having a free acidity content expressed as oleic acid, of not more than 1 g per 100 g, and the other characteristics of which comply with those laid down by the Commission [...]for this category.



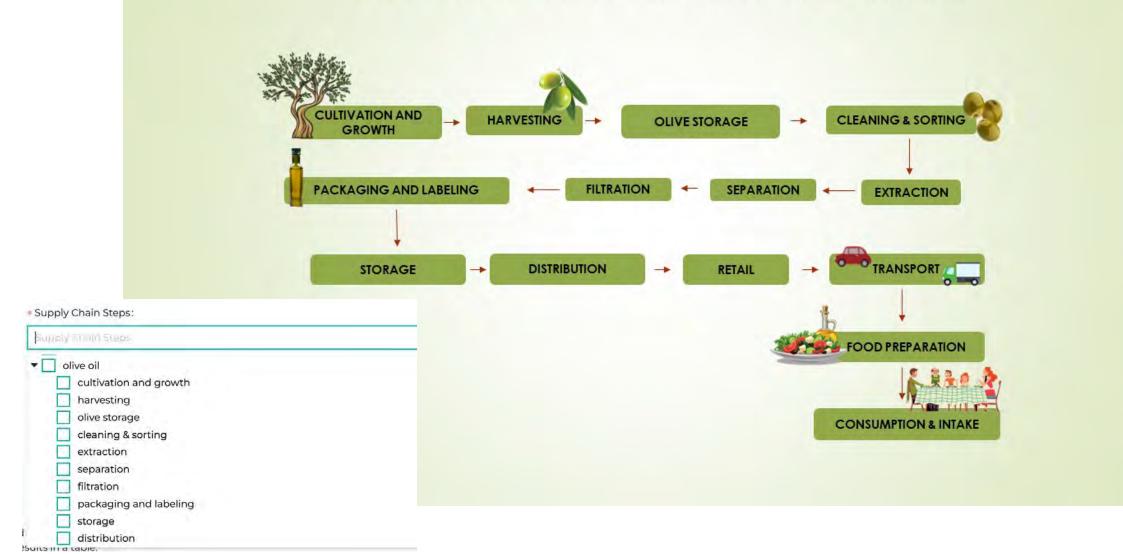
#### 8. OLIVE-POMACE OIL

Oil obtained by blending refined olive-pomace oil and virgin olive oil other than lampante olive oil, having a free acidity content expressed as oleic acid, of not more than 1 g per 100 g, and the other characteristics of which comply with those laid down by the Commission [...] for this category.



#### 6. CRUDE OLIVE-POMACE OIL

Oil obtained from olive pomace by treatment with solvents or by physical means or oil corresponding to lampante olive oil, except for certain specified characteristics, excluding oil obtained by means of re-esterification and mixtures with other types of oils, and the other characteristics of which comply with those laid down by the Commission [...] for this category.


IN GREEN BOXES EDIBLE OILS

Annex XVI REGULATION (EC) 1308/2013 (cons. 2020)





## VIRGIN OLIVE OIL SUPPLY CHAIN







|                   | MATRIX                                  | OLIVES   | OLIVE PASTE | MUST                         | OIL-MUST       | OIL        | FILTERED OIL |                                        |                  | OIL           |                            |                          |
|-------------------|-----------------------------------------|----------|-------------|------------------------------|----------------|------------|--------------|----------------------------------------|------------------|---------------|----------------------------|--------------------------|
|                   | STEP                                    | CRUSHING | MALAXATION  | EXTRACTION AND<br>SEPARATION | CENTRIFUGATION | FILTRATION | OIL STORAGE  | OIL PACKAGING<br>BLENDING AND LABELING | STORAGE DISTRIBL | JTION STORAGE | RETAILTRANSPORT            | STORAGE FOOD PREPARATION |
| $\rightarrow$     | PARAMETERS<br>OF INTEREST               | A        | Analytes o  | r characteri                 | stics that n   | nay be     | subjected    | d to change de                         | pending on       | the conditio  | on in the ste <sub>l</sub> | o analized               |
| $\longrightarrow$ | INFLUENCE<br>PARAMETERS                 |          | (           | Conditions t                 | hat can inf    | luence     | levels of    | the parameters                         | of interest      |               |                            |                          |
| $\Longrightarrow$ | PARAMETERS<br>OF INTEREST<br>MONITORING |          |             | e.g., analyti                | cal method     | dologie    | s, non des   | structive tests                        |                  |               |                            |                          |
| $\longrightarrow$ | INFLUENCE<br>PARAMETERS<br>MONITORING   |          | $\epsilon$  | e.g., sensors                | , drones, a    | gromet     | eorologic    | eal stations                           |                  |               |                            |                          |





| NUTRITIONAL QUALITY MATRIX                 |                               |                                           |                                                                                                                                    |                                                                |                                                                                                                     | OLIVES                                                                                                                                                                                                                                        |                                                                         |                                                                          |                                                                                                        |                                                                                                                             |                                                      | OLIVE PAS                                     | TE MUST                          | OIL-MUST                                                      | OIL                                                                                                                | FILTERED OIL                                                                                                                                                              |                                                                                                                                |                                                                     |                                                                                                                                         | OIL                     |                                                             |                                                                                                                                 |                                                                                                  |
|--------------------------------------------|-------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| STEP                                       | CULTIVATION AN                | AND GROWTH                                |                                                                                                                                    | HARVESTING F                                                   | OSTHARVESTING TRANSPORT OF OLIVES                                                                                   | OLIVES STORAGE                                                                                                                                                                                                                                | ARRIVAL AT THE<br>MILL                                                  | COMBINING DIFFERENT LOADS O                                              | OF OLIVES CLEANING                                                                                     | SORTING                                                                                                                     | DEPITTING                                            | CRUSHING MALAXATI                             | EXTRACTION<br>AND<br>SEPARATION  | CENTRIFUGATI<br>N                                             | IO FILTRATION                                                                                                      | OIL STORAGE                                                                                                                                                               | OIL BLENDING                                                                                                                   | PACKAGING AND<br>LABELING                                           | STORAGE DISTRIBUTION                                                                                                                    | STORAGE RET.            | TAIL TRANSPORT STORAL                                       | SE FOOD PREPARATION                                                                                                             |                                                                                                  |
| PARAMETERS OF INTEREST                     | hydroxytyroso                 | sol), phytosterols, pi                    | FAs and PUFAs), total polyp<br>ments (carotenoids, chlorog<br>peroxides, DAGs, peroxide v                                          | ohylls), lignans, seco                                         | ridoid derivatives, 3,4-DHPEA-                                                                                      | micronutrients content, free<br>acidity level, peroxide, K232 val<br>K270 value, mould                                                                                                                                                        |                                                                         | micronutrients, total polypi<br>secoiridoids, phytosterols, p            |                                                                                                        | iols olives text                                                                                                            | pits, pit<br>dust                                    | micronutrients, total<br>DAGs, acidity, homog | eneity, non-volatile             | itile compounds a<br>le oxidation produ<br>noleptic character | and pigments, secoiridoids, total<br>ucts (phenols, hydroxylated fatty<br>isstics                                  | 1,2-DAGs, tocopherol, peroxide v<br>lipid oxidation products (i.e.<br>hydroperoxides, conjugated diene<br>trienes), K232 value, K270 valu<br>organoleptic characteristics | and tot polyphenols, vola                                                                                                      | tile compounds and pigments,<br>ganoleptic characteristics          | tot polypheno                                                                                                                           | is, volatile compo      | ounds and pigments, secoiridoids, organole                  | otic characteristics                                                                                                            |                                                                                                  |
| PARAMETERS OF INFLUENCE                    | exposure, p                   | physical-chemical of capacity (CEC); C to | ns: e.g., air composition, sur<br>naracteristics (pH, cation<br>tal, pE) of soil and trees,<br>ontent; pruning, pest and<br>gement | time (t), techniques applied, maturity index, detachment index | Femperature (T), t, mechanical<br>preakages, equipment type and<br>characteristics                                  | storage conditions (T,t)                                                                                                                                                                                                                      | storage<br>conditions (T,t)                                             | mixing ratio, content in each s<br>of olives                             | single load t, washing water qual                                                                      | machine efficiens                                                                                                           | ery machinery<br>cy efficiency                       | and cleaning efficienc                        |                                  | olid residues, degr                                           | ency, oxidation, handling practices<br>ree of emulsification produced in<br>all damage                             | T, t, humidity, light, enzymes<br>metalloproteins, impurities and :<br>residues                                                                                           | olid x                                                                                                                         | package's materials an<br>integrity, machinery<br>efficiency, light | f T, t, lig                                                                                                                             | iht, hu                 | Nutrition                                                   | nal qu                                                                                                                          | uality                                                                                           |
| PARAMETERS OF INTEREST<br>MONITORING       | chemical                      | al analysis: GC and G<br>transformed      | C–MS, GC/FID, LC-MS/MS, HI<br>nfrared (FTIR), colorimetric i                                                                       | PLC, HPLC-DAD, HPLI<br>methods; non-destri                     | :-UV, UHPLC-MS, Fourier<br>ictive tests                                                                             | chemical analysis: atomic<br>spectroscopy (AAS, ICP-AES),<br>titration of free fatty acid,<br>acidimeter, titration with sodic<br>thiosulfate for POV, UV<br>spectrophotometer,<br>UHPLC—DAD—QTOFMS for Fur<br>Metabolites Analysis), DNA bas | chemical<br>analysis: titration<br>of free fatty<br>acids, acidimeter   | chemical analysis: atomic spe<br>(AAS, ICP-AES), GC and GC-M<br>LC-MS/MS |                                                                                                        |                                                                                                                             | non-<br>ive destructive<br>tests                     | chemical analysis: at                         |                                  | y (AAS, ICP-AES),<br>-Gas Chromatogra                         | GC, GC-MS, GC/FID, LC-MS/MS,<br>aphy                                                                               | chemical analysis: GC, GC–MS, GC/<br>MS/MS, HPLC, UV spectrophoton                                                                                                        | D, LC- chemical analysis: GC, G<br>eter UV spec                                                                                | C–MS, GC/FID, LC-MS/MS, HPL<br>trophotometer)                       | C, chemical analysis: G                                                                                                                 | C, HPLC, UV, spec       | ctrophotometry/ HPLC, Headspace-Gas Chr<br>sensory analysis | matography, panels for                                                                                                          |                                                                                                  |
| MATR                                       | TRIX                          | CULTIVATI                                 | ON AND GROWTH                                                                                                                      |                                                                | HARVESTING POSTHA                                                                                                   | RVESTING TRANSPORT OLIVES                                                                                                                                                                                                                     | OLIVES<br>STORAGE                                                       | ARRIVAL AT THE COM                                                       | IBINING DIFFERENT LOADS OF OLIV                                                                        | /ES CLEANING                                                                                                                |                                                      | SORTING DEPITTING                             | CRUSHING MA                      | OLIVE PASTE  ALAXATION  EXTR                                  | MUST OIL-MUST  ACTION AND CENTRIFUGATION FILT                                                                      | OIL<br>TRATION OIL STORA                                                                                                                                                  | FILTERED OIL                                                                                                                   | OIL BLENDING                                                        | PACKAGING AND LABELING                                                                                                                  | STORAGE DIS             | OIL<br>DISTRIBUTION STORAGE RETAIL                          | TRANSPORT STORAG                                                                                                                | SE FOOD PREPARATION                                                                              |
| INFLUENCE PARAMETERS MONITORING PARAMETERS | IAMETERS OF INTERES           |                                           | nical: PHAs, pesticides, toxic<br>nents; biological: mycotoxin<br>contaminants: radior                                             | s, moulds, physical                                            | mixir                                                                                                               | ig the good olives with broken or<br>logical: yeast, files' larvae, mould                                                                                                                                                                     | contamined ones, che<br>s; physical contaminar                          | emical: phtalate esters;                                                 | mical and biological contaminant<br>ng the good olives withwith brok<br>or contamined ones             | ts: contaminants<br>ken good olives wit                                                                                     | thwith broken<br>ones; physical:                     | x x                                           | chemical:                        | trihalomethanes                                               | sation                                                                                                             | contaminants: metals chemical                                                                                                                                             | phtalate esters, mineral hydro<br>impurities and soli                                                                          | carbons, physical contaminant<br>d residues                         | chemical: phtalate est<br>s: BPA, mineral<br>hydrocarbon; physica<br>foreign matters                                                    | ers,                    | biological: moulds, bacteria, y                             | easts                                                                                                                           | chemical: acrolein,<br>biological: pathogenic<br>and spollage<br>organisms                       |
| INFLUI                                     | LUENCE PARAMETERS             | of so<br>environ                          | atic conditions e.g., physical<br>(pH, cation exchange capac<br>mental pollution, physiopato<br>dd plant protection products       | ity (CEC); C total, PE)<br>ological factors, bioci             | , system (breaking break                                                                                            | ipment, storage and trasport co<br>ages, handling efficiency, cleanin<br>contact                                                                                                                                                              | nditions (T, t, airflow, r.<br>g and sanitizing proce<br>material (FCM) | ain, sun), mechanical<br>dures, integrity of food                        | handling efficiency                                                                                    | washing w<br>cleaning e                                                                                                     |                                                      | x x                                           | T, t, cleaninį<br>(FCM), food co | ontact with the lu                                            | n programs efficiency, integrity o<br>bricating oils of processing plants<br>ricating oils used in augers, belt co | s and machinery (bulldozer                                                                                                                                                | cleaning and sanitizing proceds                                                                                                | ures, integrity of FCM                                              | cleaning and sanitizing procedures, integrity FCM , printing inking redients                                                            |                         | Sa                                                          | fety                                                                                                                            |                                                                                                  |
| PARAL<br>MONI                              | AMETERS OF INTERES            | MS/MS,                                    | tal analysis: GC-MS, HPLC-M!<br>thin-layer chromatography (<br>AS ICP-ASS ICP-MS DNA - b<br>MATRIX MATRIX MATRIX DATAS             | TLC), HPLC-FLD, GC-I                                           | chemical<br>analysis: LC-MS,<br>HPLC-DAD-<br>QTOFMS for<br>Fungal<br>Matsholites                                    | ical analysis (LC—MS, HPLC—DAI<br>DNA-based techi                                                                                                                                                                                             | D—QTOFMS for Funga<br>niques, visual inspectio                          | l Metabolites Analysis),                                                 | emical analysis: LC-MS, HPLC-DAE<br>QTOFMS for Fungal Metabolites<br>lysis, DNA-based techniques, visu | D- Metabolites Ar<br>liquid extraction                                                                                      | FMS for Fungal<br>nalysis, Liquid-<br>on techniques  | x x                                           |                                  | chemical analysi                                              | is: HPLC, HPLC-GC-FID, AAS, ICP-A                                                                                  | AES, ICP-MS chemi                                                                                                                                                         | al analysis: HPLC, HPLC-GC-FID                                                                                                 | visual inspection,<br>nondestructive tests                          | chemical analysis: HPI<br>HPLC-GC-FID;<br>nondectrus the tech                                                                           | .с,                     | visual inspection, nondestructiv                            | e tests                                                                                                                         | chemical analysis (LC-<br>MS, GC-MS, liquid-<br>liquid microextraction<br>(DLIME) GC-MS viscosi) |
|                                            |                               |                                           | STEP                                                                                                                               | CULTIVATION AND                                                | GROWTH                                                                                                              | HARVESTING PC                                                                                                                                                                                                                                 | OSTHARVESTING TRANS                                                     | OLIVES STORAGE                                                           | ARRIVAL AT THE CO!                                                                                     | MBINING DIFFERENT LC                                                                                                        | DADS OF OUVES                                        | CLEANING                                      | SORTING                          | DEPITTING CR                                                  | RUSHING MALAXATION EXTRACTION AND SEPARATION                                                                       | ON CENTRIFUGATIO FILTRATION                                                                                                                                               | OIL STORAGE                                                                                                                    | OIL E                                                               | ILENDING P.                                                                                                                             | ACKAGING AND<br>ABELING | STORAGE DISTRIBUTION STORAGE                                | RETAIL TR                                                                                                                       | ANSPORT STORAGE FOOD PREPARATION                                                                 |
| INFLUI<br>MONE                             | LUENCE PARAMETERS<br>NITORING | agro-m                                    | ete<br>uit<br>Parameters of interest                                                                                               | acids, triglycerio                                             | ore earth elements, organic comp<br>les, volatile compounds, pigmen<br>minerals, genomic profiles                   | sounds (fatty<br>ts profiles),                                                                                                                                                                                                                |                                                                         | ж                                                                        | ,                                                                                                      | sotopic ratios, rare ea<br>organic compounds<br>triglycerides, volatile<br>gments profiles), min<br>profiles                | (fatty acids,<br>compounds,<br>erals, genomic        |                                               | х                                |                                                               | х                                                                                                                  | fatty acie<br>(FAAEs), d<br>(DAGs),<br>products of o<br>phenolic co<br>pyropheop                                                                                          | eaves; sterols,<br>alkyl esters<br>scylglycerols<br>egradation<br>lorophylis and<br>pounds -e.g.,<br>ytins (PPPs);<br>empounds | x rati                                                              | n of olives used: isotopic<br>os, rare earth elements,<br>cronutrients, pigments<br>offiles, genomic profiles                           |                         | х                                                           | origin of olives used:<br>isotopic ratios, rare<br>earth elements,<br>micronutrients,<br>pigments profiles,<br>genomic profiles | x                                                                                                |
|                                            |                               |                                           | INFLUENCE PARAMETERS                                                                                                               | exposition, physi                                              | e, longitude, rainfall, distance fro<br>cal-chemical characteristics of so<br>apacity (CEC); C total, pE) fertilisa | il (pH, cation                                                                                                                                                                                                                                |                                                                         | x                                                                        | la<br>f                                                                                                | olives loads provenar<br>atitude, longitude, rai<br>from sea, sun expositi<br>chemical characteris<br>fertilisers u         | infall, distance<br>ion, physical-<br>stics of soil, |                                               | x                                |                                                               | х                                                                                                                  |                                                                                                                                                                           | eaves, refined<br>ils                                                                                                          | raii<br>x Su                                                        | ivar, latitude, longitude,<br>nfall, distance from sea,<br>n exposition, physical-<br>mical characteristics of<br>soil, fertilisers use |                         | Trace                                                       |                                                                                                                                 |                                                                                                  |
|                                            |                               |                                           | PARAMETERS OF INTEREST<br>MONITORING                                                                                               | GC/C/IRMS, DNA-                                                | ssis: GC, GC–MS, GC/FID, LC-MS/<br>based techniques, spectroscopy<br>nance, mass spectrometry, NRM]<br>noses        | (e.g., nuclear                                                                                                                                                                                                                                |                                                                         | х                                                                        | ba<br>r                                                                                                | nemical analysis: GC, GC,<br>.C-MS/MS, HPLC, GC/V<br>ased techniques, spec<br>nuclear magnetic resc<br>pectrometry, NMR); e | C/IRMS; DNA-<br>ctroscopy (e.g.,<br>onance, mass     |                                               | х                                |                                                               | х                                                                                                                  | chemical<br>GC-MS, GC/<br>ŀ                                                                                                                                               | nalysis: GC,<br>ID, LC-MS/MS,<br>LC                                                                                            | x GC-                                                               | hemical analysis: GC,<br>-MS, GC/FID, LC-MS/MS,<br>HPLC                                                                                 |                         | Aute                                                        | microsatellite DNA,random amplified polymorphic DNA); chromatography; spectroscopy (e.g.,NMR, MS); visual inspection            | ·                                                                                                |
|                                            |                               |                                           | INFLUENCE PARAMETERS<br>MONITORING                                                                                                 | logbook, drone,                                                | satellite images, agro-meteorolog<br>chemical analysis                                                              | gical station,                                                                                                                                                                                                                                |                                                                         | х                                                                        | log                                                                                                    | gbook, disciplinary of p<br>certificated pro                                                                                | production (for<br>oducts)                           |                                               | x                                |                                                               | х                                                                                                                  | production (<br>products                                                                                                                                                  | sciplinary of<br>or certificated<br>inspection<br>x-ray, etc.)                                                                 |                                                                     | ogbook, disciplinary of<br>duction (for certificated<br>products)                                                                       |                         | x                                                           | x                                                                                                                               | x                                                                                                |





| NUTRITIONAL QUALITY       |                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                |                                                                                                                           |                                 |            |                                      |                                                                                                                                                       |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                   |             |                                |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|
| MATRIX                    |                                                                                                                                                                                                                                                                                                                                                                                                                                           | OLIVES     |                |                                                                                                                           | MUST                            |            |                                      |                                                                                                                                                       |                                                                                                                                                                                           | OIL                                                                                                                                                                                                                                                                                                                                                               |             |                                |
| STEP                      | CULTIVATION AND GROWTH                                                                                                                                                                                                                                                                                                                                                                                                                    | HARVESTING | OLIVES STORAGE | CLEANING & SORTING                                                                                                        | EXTRACTION<br>AND<br>SEPARATION | FILTRATION | PACKAGING AND STORAGE DISTRIBUTION F |                                                                                                                                                       |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                   | TRANSPORT   | FOOD PREPARATION & CONSUMPTION |
| PARAMETERS OF INTEREST    | https://catalogues.fns.foodcase-services.com/catalogues/datasets/2     https://catalogues.fns.foodcase-services.com/catalogues/datasets/11     https://catalogues.fns.foodcase-services.com/catalogues/datasets/25     https://catalogues.fns.foodcase-services.com/catalogues/datasets/24     https://catalogues.fns.foodcase-services.com/catalogues/datasets/1     https://catalogues.fns.foodcase-services.com/catalogues/datasets/26 |            |                |                                                                                                                           |                                 |            |                                      | case-services<br>case-services<br>case-services<br>case-services<br>case-services<br>case-services<br>case-services<br>case-services<br>case-services | ccom/catalogues/c<br>.com/catalogues/c<br>.com/catalogues/c<br>.com/catalogues/c<br>.com/catalogues/c<br>.com/catalogues/c<br>.com/catalogues/c<br>.com/catalogues/c<br>.com/catalogues/c | https://catalogues.fns.foodcase-services.com/catalogues/datasets/5     https://catalogues.fns.foodcase-services.com/catalogues/datasets/9     https://catalogues.fns.foodcase-services.com/catalogues/datasets/52     https://catalogues.fns.foodcase-services.com/catalogues/datasets/57     https://catalogues.fns.foodcase-services.com/catalogues/datasets/51 |             |                                |
| analytical technique used | x                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                | *Attenuated-total-reflectance Fourier Transformed Infrared Spectroscopy ((ATR-FI<br>x **UV-Vis and liquid chromatographic |                                 |            |                                      |                                                                                                                                                       |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                   | ((ATR-FTIR) | х                              |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                |                                                                                                                           |                                 |            |                                      |                                                                                                                                                       |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                   |             |                                |

Supply chain steps

Parameter of interest

FNS-Cloud topics

Access mode

Parameters according to the EFSA classification

Biogenic amines

Chemical elements and derivatives

Feed additives

Flavourings

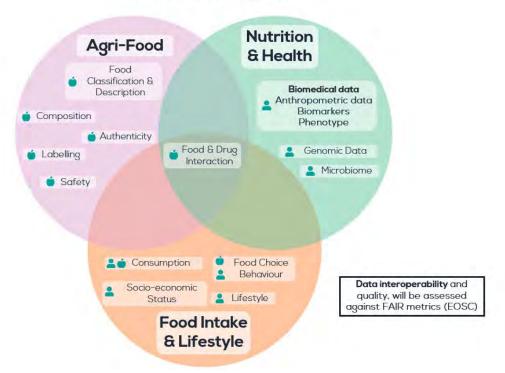
Food additives

Food contact materials

Microorganisms

Not in list

Chemical substances categories


First choose chemical substances groups





#### **FNS-Cloud Topics**







Tags in FNS-Cloud Topics according to the chart







catalogues

Browse FNS Cloud Catalogues, containing information about datasets related to the topics of food, nutrition and security, e-tools like apps and software to manage and analyse data and services, that are provided by FNS Cloud or our verified partners.



#### Datasets

Search for datasets with data related to FNS topics. Cain access to the open data or contact data owners for access.

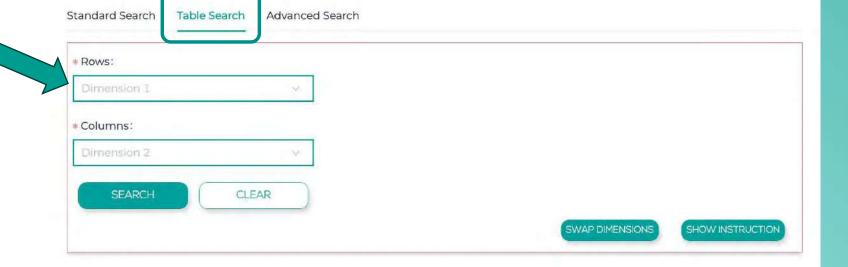


#### Tools

Explore available apps, software and algorithms to analyse, manage and visualise your



#### Services


Take advantage of services provided by FNS and verified partners, including data analysis, research and consultancy.



#### Training and Education

Browse different solutions for training and education to learn more about food nutrition security.

https://fnscloud.eu/catalogues









FNS-Cloud Final Event & Launch of FNSCloud Solution

Brussels - 12 Sept. 2023

# FNS-Cloud Food Traceability & Metrology Search Engine: AUTH role as a data provider for olive oil authenticity, composition & labelling Provision of analytical data for the traceability search engine: an example on olive oil

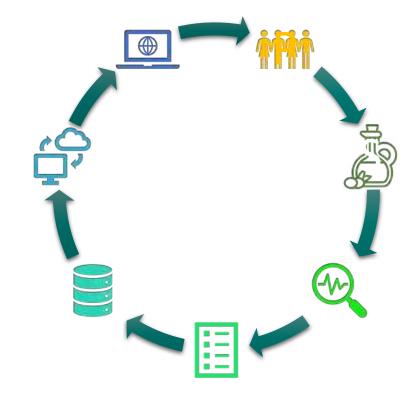


### Maria Z.Tsimidou & Nikolaos Nenadis

Food Chemistry and Technology Laboratory (LFCT), School of Chemistry, Aristotle University of Thessaloniki (AUTH), 54124, Thessaloniki, Greece;

tsimidou@chem.auth.gr







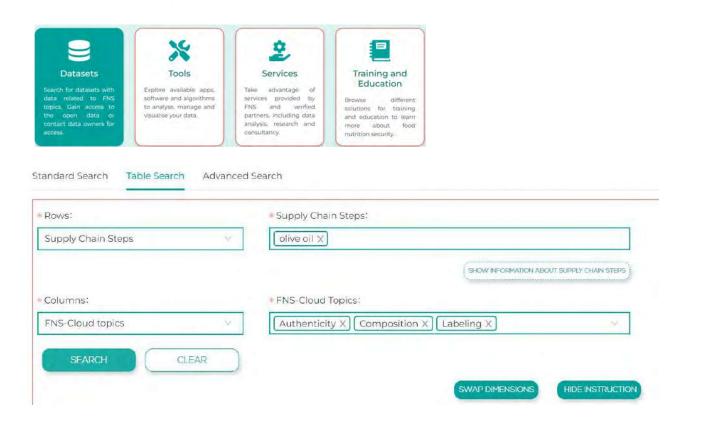

## A Food Traceability & Metrology search engine for

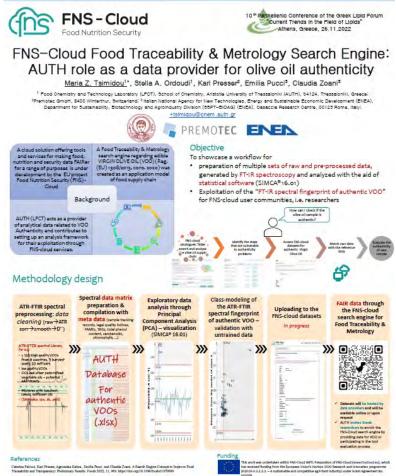
edible VIRGIN OLIVE OIL (VOO) (Reg. (EU) 1308/2013, cons. 2020)

as an application model of food supply chain









## VIRGIN OLIVE OIL SUPPLY CHAIN CULTIVATION AND HARVESTING **CLEANING & SORTING OLIVE STORAGE** GROWTH PACKAGING AND LABELING FILTRATION SEPARATION EXTRACTION TRANSPORT STORAGE DISTRIBUTION RETAIL FOOD PREPARATION CONSUMPTION & INTAKE





# AUTH (LFCT) acts as a provider of analytical data related to Olive Oil Supply Chain & Agri-Food topics: Authenticity, Composition & Labelling











## AUTH datasets for more than 100 virgin olive oil samples

metadata: geographical origin, supplier, variety, harvest season, filtration, storage period plus compositional and quality data

#### ATR-FTIR spectroscopic dataset (AUTHENTICITY)

Absorbance intensity values at 1868 different wavenumbers over the whole mid-infrared (MIR) spectral region, 4000-400 cm<sup>-1</sup> (=1868 values per sample)

Data Sets for Total Polar Phenol Content (TPP)
Total Hydroxytyrosol & Tyrosol Content
(LABELLING –HEALTH CLAIM)





# CASE STUDY: LABELLING – HEALTH CLAIM

Data Sets for Total Polar Phenol Content (TPP)

Total Hydroxytyrosol & Tyrosol





The identity of the product: edible commercial categories of olive oil in the



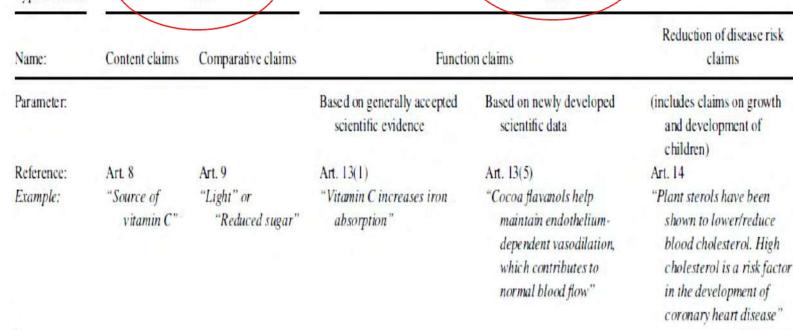




### **EU** legislation

Nutrition and health claims are strictly regulated and are important tools to guide consumers to make meaningful choices among products of a certain kind

#### Van Bools and Bruns


Critical Reviews in Food Science and Nutrition, 55:1552-1560 (2015)

Name: Content claims Comparative claims

Parameter:

Based on generally accepted

Based on newly developed (includes claims on growth excitatific acid personal development of the second of the secon







For the protection of consumers and fair trade any claim on a product should be proved 'true' by appropriate administrative and/or analytical means

- this is not a straightforward procedure.
- official approval of a claim or a trade mark does not always guarantee safe implementation for commercial purposes.
- a continuum of actions is needed for the benefit of all interested parties, in particular, at times of rising fraud incidences and tough competition.



## Nutrition and health claims applicable to olive oil in EU legislation (Reg. 1169/2011 and Reg. 1924/2006)

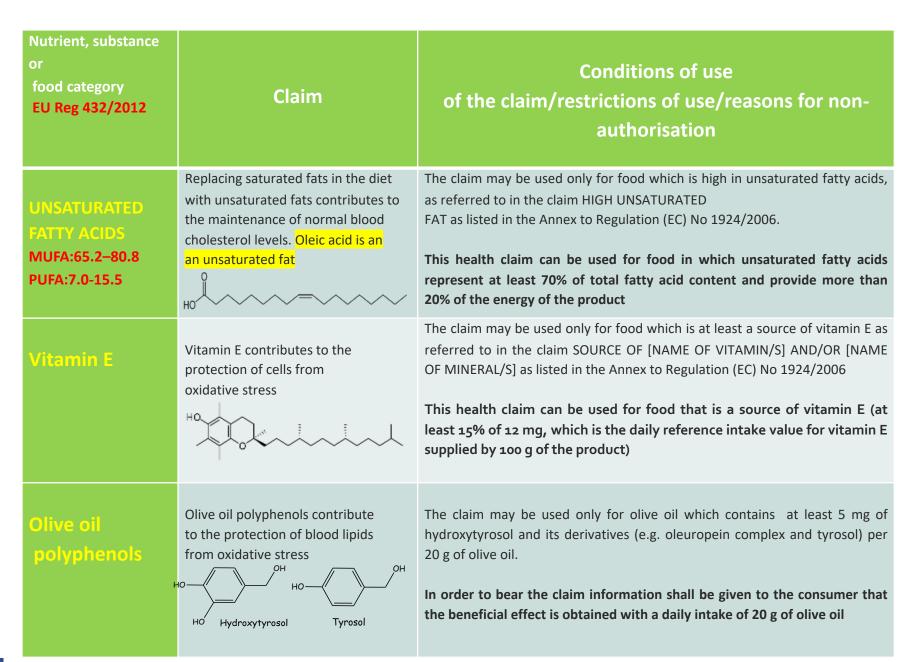
#### **Nutrition claims**

#### 1. mandatory

- (a) energy value; and
- (b) the amounts of fat, saturates.

#### 2. supplementary information

- (a) mono-unsaturates;
- (b) polyunsaturates;
- © any of the vitamins listed in point 1 of Part A of Annex XIII, and present in significant amounts as defined in point 2 of Part A of Annex XIII.


#### **Health claims**

- 1. article 13 claims" (functional claims)
- (a) the role of a nutrient or other substance in growth, development and the functions of the body; or
- 2. article 14 claims"
- reduction of disease risk claims





In particular, the health claims applicable to olive oil from the list of permitted health claims made on foods, (EU REG. 432/2012) other than those of art. 14





- 1. Hydroxytyrosol/[(3,4-dihydroxyphenyl)ethanol]/ 3,4-DHPEA, Htyr
- 2. Hydroxytyrosol acetate/4-(Acetoxyethyl)-1,2-dihydroxybenzene
- 3. 4-β-D-glucoside of hydroxytyrosol
- 4. 3-β-D-glucoside of hydroxytyrosol
- 5. Hydroxytyrosol-glucoside
- 6\* β-Hydroxytyrosol ester of methyl malate
- 7. Oleuropein aglycon
- 8. Aldehydic form of oleuropein aglycon (2 stereoisomers)
- 9. Dialdehydic form of oleuropein aglycon/ oleuropeindial
- 10. Enolic tautomer of the dialdehydic form of oleuropein aglycon
- 11. Decarboxymethyl form of oleuropein aglycon
- 12. Dialdehydic form of decarboxymethyl elenolic acid linked to 3,4-DHPEA/oleacein
- 13. Oleuropein
- 14. 10-Hydroxy-oleuropein
- 15. 10-Hydroxy-oleuropein aglycon
- 16. 10-Hydroxy-decarboxymethyl oleuropein aglycon
- 17\*\*.1-Phenyl-6,7-dihydroxyisochroman

>30
compounds
comprise the
'olive oil
polyphenols

- 1. Tyrosol/ [(p-hydroxyphenyl)ethanol])/ p-HPEA, Tyr
- 2. Tyrosol acetate
- 3. Ligstroside aglycon
- 4. Aldehydic form of ligstroside aglycon/ ligstral (2 stereoisomers)
- 5. Dialdehydic form of ligstroside aglycon/ligstrodial
- 6. Enolic tautomer of the dialdehydic form of ligstroside aglycon
- 7. Decarboxymethyl form of ligstroside aglycon
- 8. Dialdehydic form of decarboxymethyl elenolic acid linked to p-HPEA/oleocanthal
- 9. Ligstroside

benzoic & cinnamic acids, flavonoids, lignans and certain artifacts





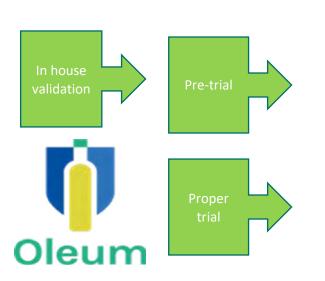
the most controversial health claim for olive oil

Authorization of the health claim aroused enthusiasm and was considered by the SMEs in the producing countries as a means to convey more benefits from virgin olive oil consumption to consumers and also to gain better prices for their products. Such an interest had not been expressed by producers, industry and mass media so far for important health claims regarding virgin olive oil that are easily grasped by the consumers. For example, it is far clearer to them that (a) olive oil is a good source of alpha-tocopherol, the most bioavailable tocopherol form that is found at an optimum ratio of unsaturated fatty acids/tocopherol content; (b) it contains the highest content of monounsaturated fatty acids among all natural plant oils [11]. A health claim, and especially a proprietary health claim, seems to be more attractive than a nutrition claim in marketing and may partially justify why industry urges to speed up authorization process. However, technical gaps may cause considerable delays, from authorization to the implementation of a particular claim and can practically jeopardize benefits anticipated by the applicants.

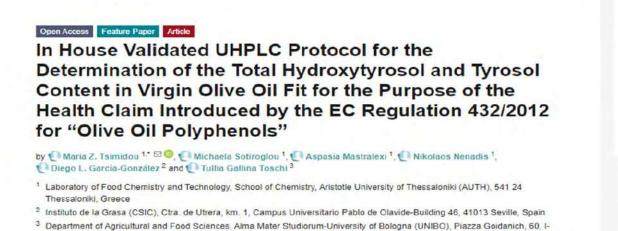
Editorial M.Z. Tsimidou, D. Boskou

The health claim on "olive oil polyphenols" and the need for meaningful terminology and effective analytical protocols

EJLST, 2015, 117. 1091-94







Since the EFSA Scientific Opinion on the substantiation of a health claim related to polyphenols in olive and maintenance of normal blood HDL cholesterol concentrations (ID 1639, further assessment) pursuant to Article 13(1) of Regulation (EC) No 1924/2006, [2012, EFSA Journal 10(8),2848] literature is increasing on this issue.

A number of sophisticated or simple analytical approaches appeared but till now EU authorities have not adopted one or more of them.

For this purpose within the OLEUM project we developed a fit for the purpose analytical protocol

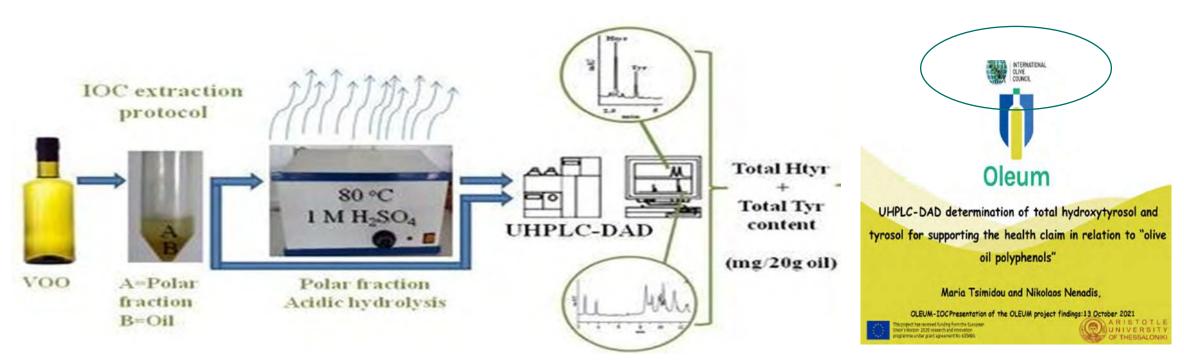











Molecules 2019, 24(6), 1044; https://doi.org/10.3390/molecules24061044

\* Author to whom correspondence should be addressed.

47521 Cesena (FC), Italy

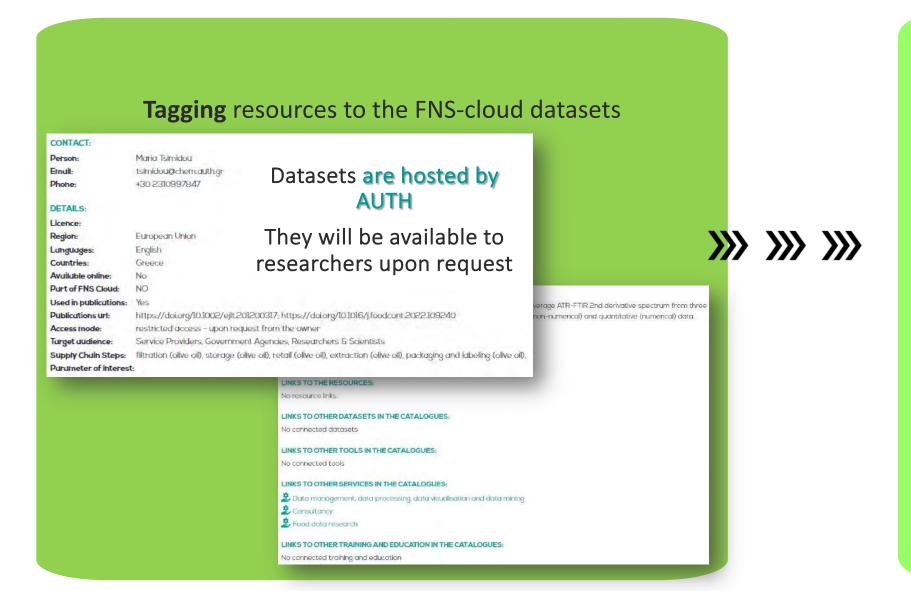
### Principle of the proposed method

The UHPLC profile of the extracted polar fraction (PF) of the oil before and after acid hydrolysis is recorded by means of diode array detection (280 nm). Acid hydrolysis of bound forms of Hydroxytyrosol (Htyr) and Tyrosol (Tyr) gives rise to free Htyr and Tyr, the content of which can then be accurately quantified using commercially available standards.








# Within the FNS CLOUD WP5 scope for olive oil labelling we developed a data set for the total hydroxytyrosol and tyrosol content for more than 120 virgin olive oils

| d | b code | SAMPLE CODE     | SAMPLE            | CULTIVAR    | GEOGRAPHICAL ORIGIN | FILTRATION<br>PARAMETER | TOTAL PHENOLS | S TOTAL OH-TYR & TYR<br>mg/20g |   |
|---|--------|-----------------|-------------------|-------------|---------------------|-------------------------|---------------|--------------------------------|---|
|   | 1      | AUTH_T3.4_1     | Blekas_2015       | CHALKIDIKIS | CHALKIDIKI          | NF                      | 138           | 2.36                           |   |
|   | 2      | AUTH_T3.4_2     | Bllekas_2016      | CHALKIDIKIS | CHALKIDIKI          | NF                      | 96            | 1.44                           |   |
|   | 3      | AUTH_T3.4_3     | Spiliopoulou_2015 | KORONEIKI   | MESSINIA            | NF                      | 289           | 7.62                           | , |
|   | 4      | AUTH_T3.4_4     | Tsimoula_2015     | CHALKIDIKIS | KOZANI              | F                       | 258           | 6.89                           |   |
|   | 5      | <br>AUTH_T3.4_5 | TSEPLETIDIS_2015  | CHALKIDIKIS | SERRES              | F                       | 328           | 10.99                          |   |
|   |        |                 |                   |             |                     |                         |               |                                |   |





### **Application to the FNS-cloud search engine**





Communication with other FNS-cloud search engines





### • Thank you for your attention!

FNS-Cloud Final Event & Launch of FNSCloud Solution Brussels - 12 Sept. 2023







www.fns-cloud.eu Don't forget to follow us: X @FNSCloudEU FNSCloudEU in FNS-Cloud @FNSCloudEU2019 www.fnscloud.eu www.myfnscloud.eu





FNS-Cloud Final Event & Launch of FNSCloud Solution

Brussels - 12 Sept. 2023

# Food Traceability Search Engine Hands-on Activity

Table search

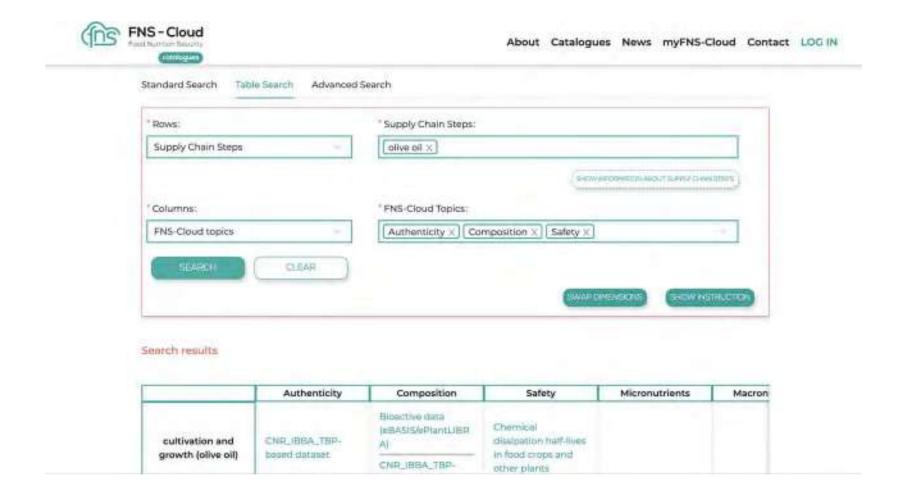
IFA team

Katherine Flynn, Luis Mayor and Sofia Reis





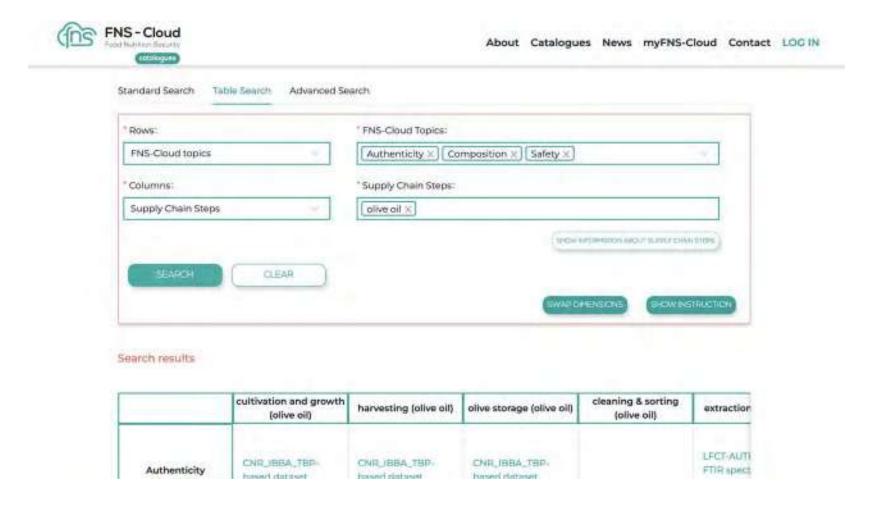
### Find datasets about:


- Authenticity
- Safety
- Composition








### **Option 1**







### Option 2







# 1. How many datasets did you find, related to the authenticity of olive oil?





# 1. How many datasets did you find, related to the authenticity of olive oil?







## 2. Do these datasets also provide information on the other FNS Cloud topics selected (composition, safety)? Which ones?



# 2. Do these datasets also provide information on the other FNS Cloud topics selected (composition, safety)?







## 3. In which supply chain steps did you find no datasets at all?





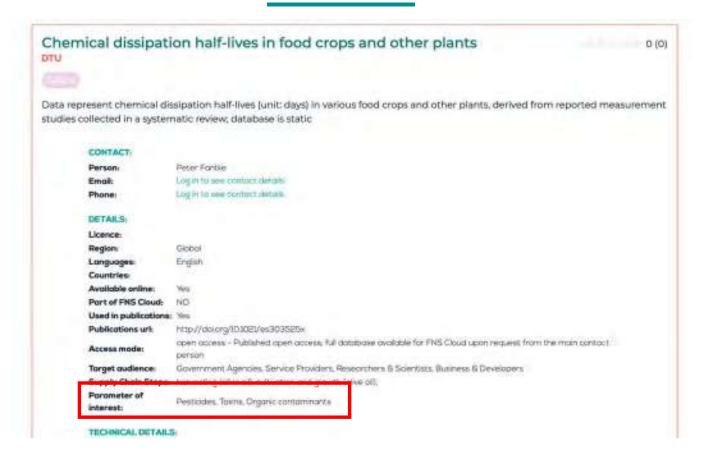
## 3. In which supply chain steps did you find no datasets at all?







# 4. Find the dataset that provides information about <u>organic contaminants</u>, <u>pesticides</u> and <u>toxins</u>.


# 4. Find the dataset that provides information about <u>organic contaminants</u>, <u>pesticides</u> and <u>toxins</u>.



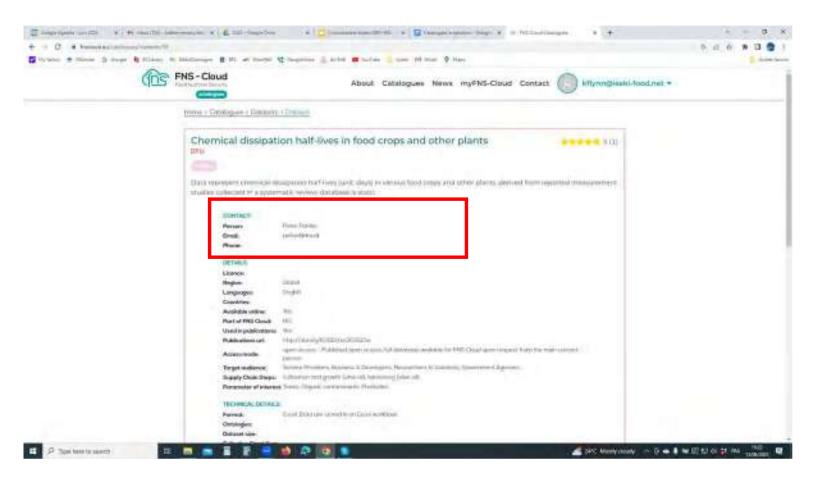




# 4. Find the dataset that provides information about <u>organic contaminants</u>, <u>pesticides</u> and toxins








## 5. Who would you contact for this dataset, is an email available?

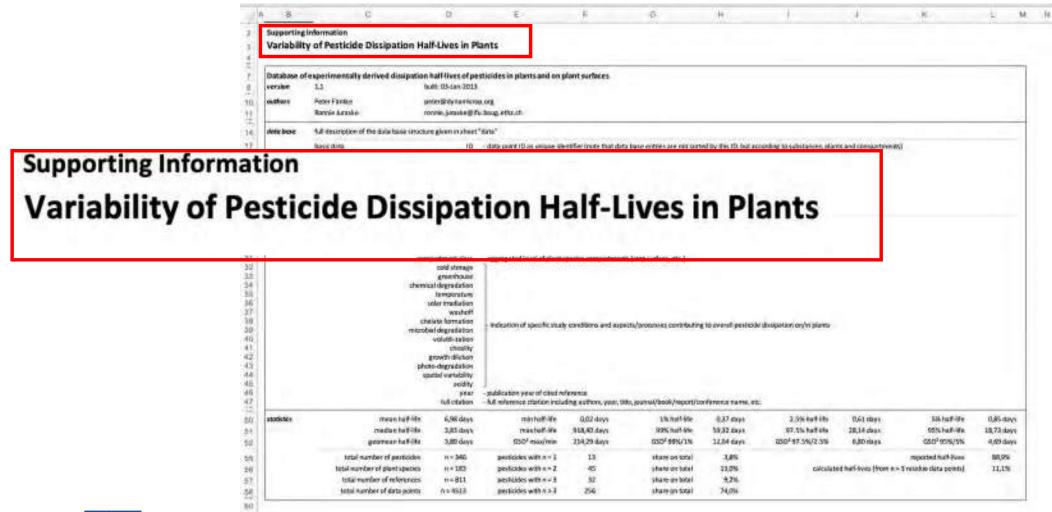




# 5. Who would you contact for this dataset, is an email available?








### 6. What is this dataset about?





### 6. What is this dataset about?







FNS-Cloud Final Event & Launch of FNSCloud Solution

Brussels - 12 Sept. 2023

## Food Traceability Search Engine Hands-on Activity

Thanks for your participation!

IFA team

Katherine Flynn, Luis Mayor and Sofia Reis






### What we reached

Collecting, organising, making available and integrating data and metadata on food quality, safety, traceability, transparency, and the authenticity of products along the food supply chain, following the FAIR approach.

Have a graphical visualisation of the entire food supply chain and the possibility to carry out different types of searches, on different dimensions alone or in combination between them and their different tags.





Query several data sources and present appropriate visualisation.



Support a food systems approach to research and innovation.

Address researchers' needs especially in data intensive fields.





## Further developments and engaging user communities

- ☐ Inclusion of additional datasets (*improving data findability*) newly developed and/or from outside the consortium
- More search options (extended supply chain) and integration with more info about definitions, matrices, parameters, current legislation, available RM, reference and official methods, PT scheme (e.g., METROFOOD-RI RM-App)
- Possibilities of integration with other tools (integration e.g., for data processing)
- Possibilities of extension to other food chains
- ☐ Collaboration with other communities and Research Infrastructures





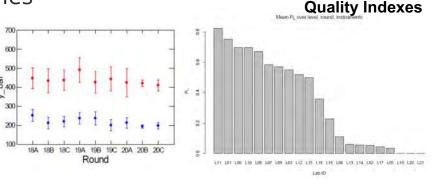


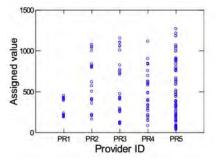


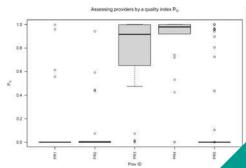
## Calculation model for Somatic Cell Counting in milk with probabilistic assessment of SCC PT







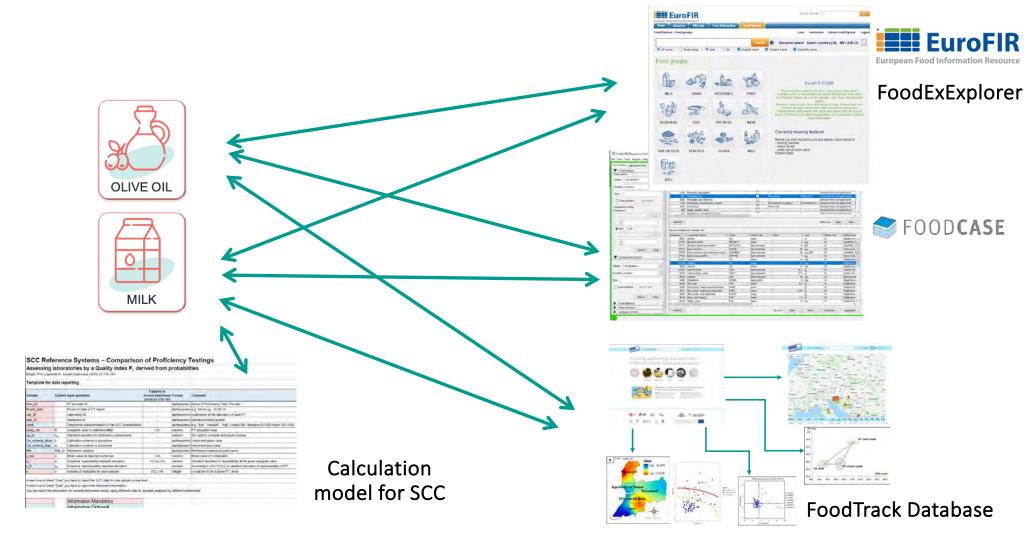




• Somatic cells in milk are one of the most important parameter of udder health. This parameter is used for milk payment scheme for genetic selection and hygiene food legislation. The determination of somatic cell in milk is done routinely by flow cytometry technique optimized to analyse raw milk.

- > Collection of data on SCC
- Comparison of Laboratories
- Comparison of PTs












### Possibilities of integration with other tools







## THANKYOUL

FNS-Cloud Final Event & Launch of FNSCloud Solution Brussels - 12 Sept. 2023







