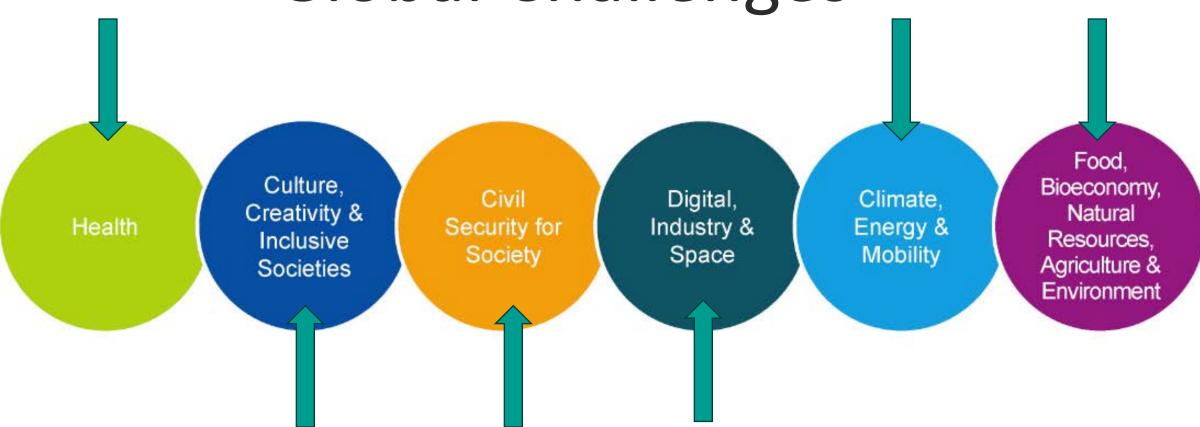
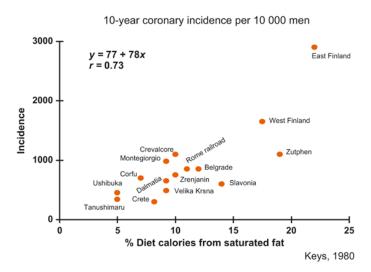


Nutrition and lifestyle challenges for intake, consumption, and health

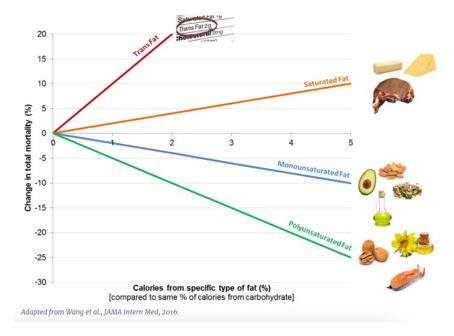
Eileen Gibney, UCD (IE)

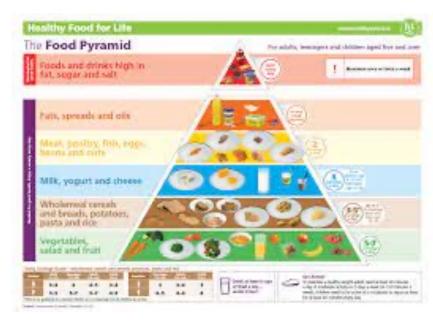


Global Challenges


Nutrition and lifestyle challenges

If we get it right we can have an impact!





Dietary fats and coronary heart disease

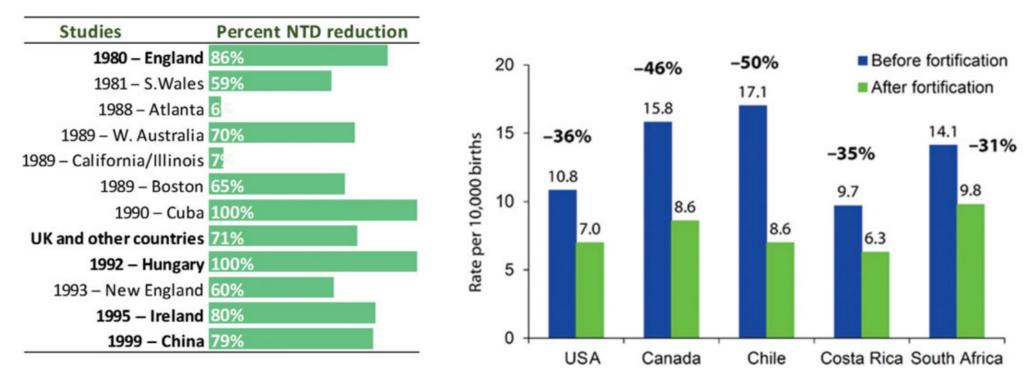

Journal of Internal Medicine, Volume: 272, Issue: 1, Pages: 13-24, First published: 14 May 2012, DOI: (10.1111/j.1365-2796.2012.02553.x)

Figure 1. Left panel: percent NTD reduction with oral folic acid supplementation during the periconceptional period. Figure courtesy of Dr. J. Mulinare; redrawn and modified from Ref. 30. Right panel: NTD rate reduction (and percent reduction) after mandatory flour fortification with folic acid. Reprinted from Ref. 31.

Nutrition and lifestyle challenges

There is a lot we are not getting right

ADOPTED: 24 March 2022 doi: 10.2903/j.efsa.2022.7259

Scientific advice related to nutrient profiling for the development of harmonised mandatory front-of-pack nutrition labelling and the setting of nutrient profiles for restricting nutrition and health claims on foods

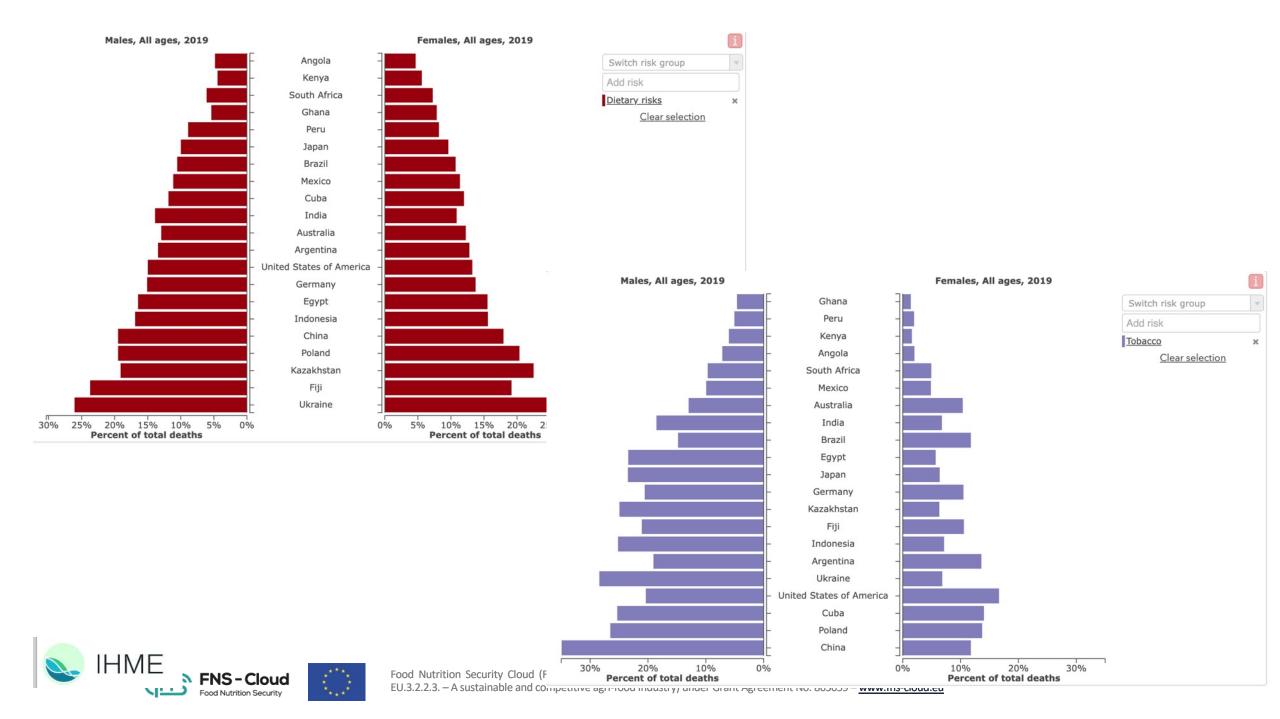
Saturated Fat intake

Sodium

Added Sugars

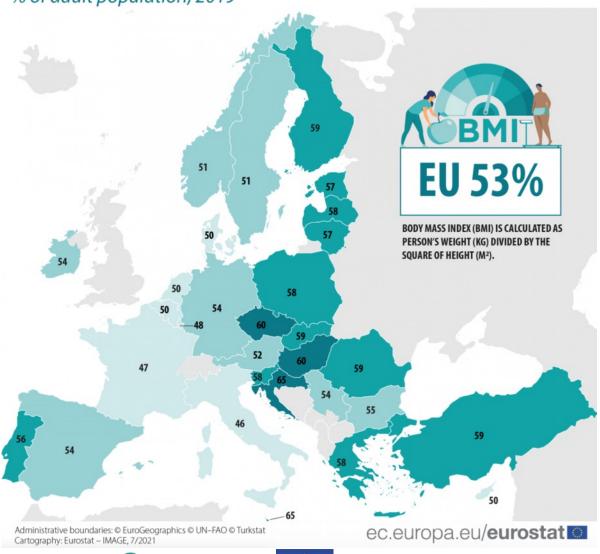
Dietary fibre,

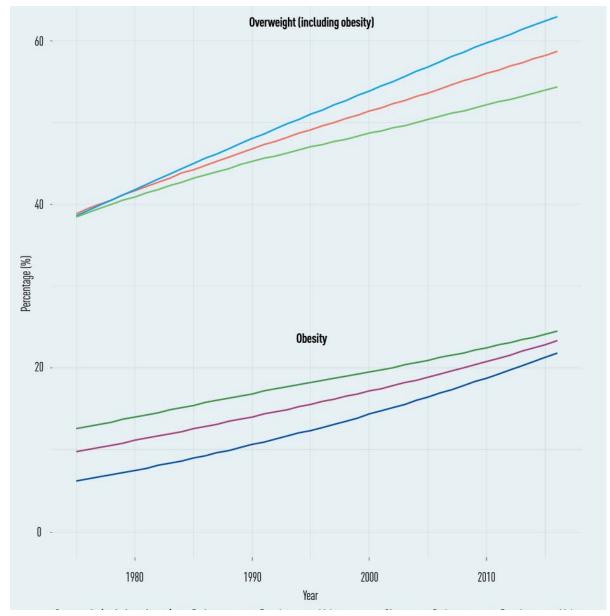
Potassium


Energy

 Other nutrients of Public Health concern

- Vit D
- Ca
- B-vitamins
- Iodine
- •





Overweight population (BMI≥25)

% of adult population, 2019

Nutrition and lifestyle challenges

Processed Foods

Sustainability

'Processed' foods

Health Ultra-processed food raises risk of heart attack and stroke, studies show

Ultra-processed foods and health

Outcome	No. of studies	No. of participants		(rand	OR om, 95 % C	TI)		(rando	OR m, 95 % CI)	P	<i>I</i> ² (%)	P_{het}
Overweight/obesity ^(6–9,26)	5	73 169			-	B		1.39	1.29, 1.50	<0.00001	0	0.47
High WC ^(7,8,24,26)	4	31 908			-	—		1.39	1.16, 1.67	0.0003	49	0.12
Hyperglycaemia ^(12,24)	2	1113			-			1.10	0.34, 3.52	0.87	67	0.08
Hypertriacylglycerolaemia ^(12,2)	4) 2	1113		_	+	-		0.95	0.60, 1.50	0.82	0	0.84
Low HDL-cholesterol ^(12,24)	2	1113				-		2.02	1.27, 3.21	0.003	0	0.86
Hypertension ^(12,24)	2	1113			-			1.31	0.50, 3.43	0.58	38	0.20
Metabolic syndrome ^(12,24)	2	1113			-	-		1.79	1.10, 2.90	0.02	0	0.49
			0.2	0.5	1	2	5					
			Decrease	ed risk		Increas	ed risk					

Fig. 2. Forest plot of cross-sectional studies investigating the association between ultra-processed foods consumption and different health outcomes. P value is for Z test of no overall association between exposure and outcome; P_{het} is for test of no differences in association measure among studies; P estimates from heterogeneity rather than sampling error. WC, waist circumference.

Pagliai, G., Dinu, M., Madarena, M., Bonaccio, M., Iacoviello, L., & Sofi, F. (2021). Consumption of ultra-processed foods and health status: A systematic review and meta-analysis. *British Journal of Nutrition*, *125*(3), 308-318.

G. Pagliai et al.

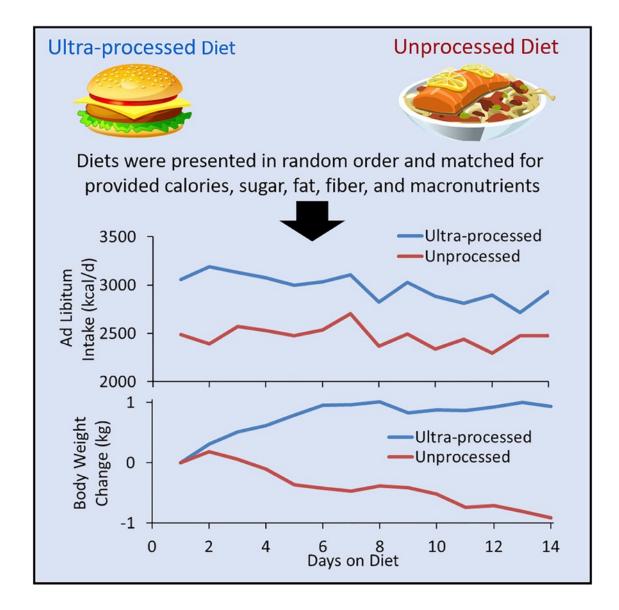

Outcome No	of stud	dies n/N			isk ratio om, 95 % CI)			isk ratio m, 95 % CI)	P	<i>I</i> ² (%)	$P_{ m het}$
All-cause mortality ^(29,31,33,35,36)	5	4687/111 056			-			1.25	1.14, 1.37	<0.00001	2	0.40
CVD incidence/mortality ^(13,35,36)	3	2501/139 867			-			1.29	1.12, 1.48	0.0003	7	0.34
CV incidence/mortality ^(13,35)	2	1150/127 969			-	-		1.34	1.07, 1.68	0.01	32	0.22
Depression ^(15,30)	2	2995/41 637			-			1.20	1.03, 1.40	0.02	42	0.19
Overweight/obesity ^(27,34)	2	2911/20278			-			1.23	1.11, 1.36	<0.00001	0	0.64
			0.2	0.5	1	2	5					
			Decreased			_	ased risk					

Fig. 3. Forest plot of prospective cohort studies investigating the association between ultra-processed foods consumption and different health outcomes. P value is for Z test of no overall association between exposure and outcome; P_{het} is for test of no differences in association measure among studies; P estimates from heterogeneity rather than sampling error. P CV, cerebrovascular.

Pagliai, G., Dinu, M., Madarena, M., Bonaccio, M., Iacoviello, L., & Sofi, F. (2021). Consumption of ultra-processed foods and health status: A systematic review and meta-analysis. *British Journal of Nutrition, 125*(3), 308-318.

Hall KD et al Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019 Jul 2;30(1):67-77.e3.

Classification system	Categorization of foods according to the degree of processing	Definition of HPF
NOVA	Unprocessed or minimally processed foods Processed culinary ingredients Processed foods Ultraprocessed foods	Formulations of several ingredients which, besides salt, sugar, oils and fats, include food substances not used in culinary preparations. In particular, flavours, colours, sweeteners, emulsifiers and other additives used to imitate sensory qualities of unprocessed or minimally processed foods and their culinary preparations, or to disguise undesirable qualities of the final product.
UNC	Processing levels 1. Less processed 2. Basic processed 3. Moderately processed 4. Highly processed Convenience levels 1. Requires cooking 2. Ready to heat 3. Ready to eat	Multi-ingredient industrially formulated mixtures processed to the extent that they are no longer recognizable as their original plant/animal source and consumed as additions (condiments, dips, sauces, toppings or ingredients in mixed dishes).
EPIC	 Moderately/non-processed Processed staple foods Highly processed foods 	Foods that have been industrially prepared, including those from bakeries and catering outlets, and which require no or minimal domestic preparation apart from heating and cooking (for example, bread, breakfast cereals, cheese, commercial sauces, canned foods including jams, commercial cakes, biscuits and sauces).
IFIC	 Minimally processed foods Foods processed for preservation, nutritional enhancement or freshness Mixtures of combined ingredients Ready-to-eat processed foods Prepared foods and meals 	HPF is not specified in the IFIC category but categories 3–5 can be assumed to correspond to HPFs.

Robustness of food processing classifications

- 100 most commonly consumed foods among US children
- UNC, NOVA & IFIC- Interrater reliability, relationship between classification & nutrient composition

Lower potassium predictive of IFIC's classification (mod v min) (p = 0.01);

Lower Lower vitamin
D predictive of UNC's
classification
(high v min)
(p = 0.04).

Sodium and added sugars predictive of all systems' (high v min) (p < 0.05).

Current classification systems may not sufficiently identify foods with high nutrient quality commonly consumed by children in the U.S.

Bleiweiss-Sande, R. et al. Robustness of food processing classification systems. Nutrients 11, 1344 (2019).

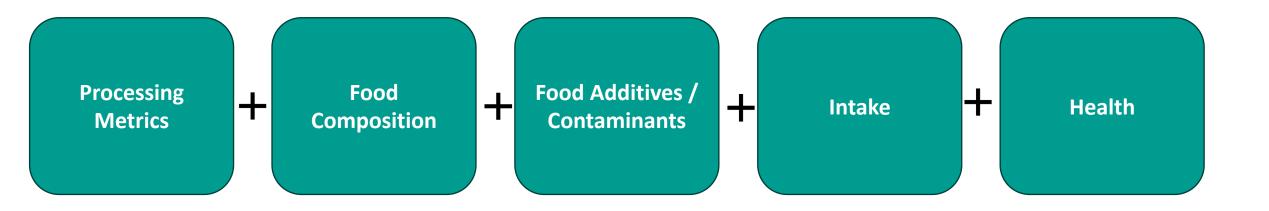
Robustness of food processing classifications

- PREDIMED-Plus trial) of 6,874 subjects
- 4 classification systems (NOVA, UNC, EPIC and IFIC)

	NOVA	UNC	EPIC	IFC
Obesity	~			
SBP / DBP		✓		
Total Chol			✓	/
LDL Chol				

Martinez-Perez, C. et al. Use of diferent food classification systems to assess the association between ultra-processed food consumption and cardiometabolic health in an elderly population with metabolic syndrome (PREDIMED-Plus Cohort). Nutrients 13, 2471–2489 (2021).

Challenges.....


- Lack of rigor / transparency / interoperability of classification systems
- Systems are nutrient driven lack data on processing (milling, extrusion, drying....)
- Absence of data on the occurrence/concentration of 'processing agents' in food composition databases
- Clarification of the role of nutrients in UPF—health outcome associations.
- Clarification of the role of physical and sensory properties in UPF—health outcome associations

NATURE FOOD | VOL 3 | FEBRUARY 2022 | 104-109 | www.nature.com/natfood

Data Fragmentation & Integration – FNS Cloud

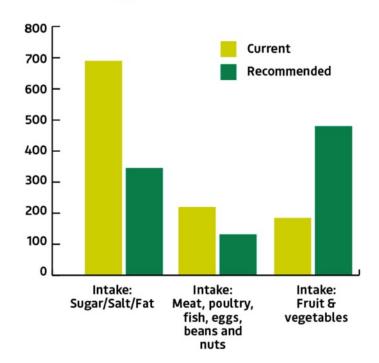
Sustainable Food Systems

Sustainable dietary guidelines

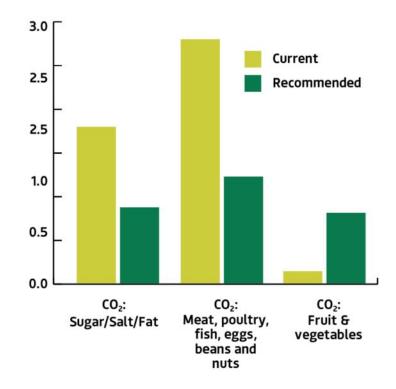
Country/Organization										
Food Group	F	AO	BDA	Denmark	Germany	Sweden	Qatar	Canada	Brazil	Netherlands
Whole grains	[4			Choose whole grains	Opt for whole grains	Pick wholemeal	Choose whole grain	Consume regularly	Opt for whole	4-5 servings daily
Tubers/starchy veget Vegetables (all)	ables	Regular and abundant		Increase	3 servings a day	Eat 'lots'	3-5 servings/day	"Plenty"/half of plate	Consume regularly	Plenty and seasonal if possible (250 g)
Fruit				increase	2 servings a day	Eat 'lots'	2-4 servings/day "Plenty"/half of pl		Consume regularly	>2 servings and seasonal if possible
Dairy	N	1oderate	Moderate	Pick low fat	Daily	Choose low-fat	Daily of skimmed/low fat	Low-fat		2 dairy servings and 40 g cheese
Animal protein Red meat	Sr	mall	Reduce 70 g/day	Eat less	300-600 g/week	<500 g/week	2			
Processed meat	Sr	mall	Avoid				Avoid / Do	Avoid / Do not consume regularly / Reduce		
Pork	Sr	mall								
Poultry	N	1oderate					Choose skinless or lean			
Eggs	N	1oderate								
Fish	N	loderate	From sustainable sources	Choose more	1-2x per week	2-3x per week	2x per week			Eat sustainably
Plant protein	3 Re	egular and	abundant / I	Increase / Ch	oose			Choose more often than animal sources	Choose unprocessed, plant proteins	Includes vegetarian alternatives
Legumes Nuts		_	more				Eat daily			Increase 25g unsalted/day
Fat				Choose vegetable oils		Pick healthier/ unsaturated			Limit	<40 g per day
Saturated								<10% energy intake		
Added sugar High salt/fat foods			Avoid Avoid	Eat less Eat less	Avoid Avoid	Avoid Avoid	Reduce and avoid Reduce and avoid	<10% energy intake Avoid eating regularly	Limit Limit	Reduce Reduce

Davies, KP, Gibney, ER, O'Sullivan, AM. Moving towards more sustainable diets: Is there potential for a personalised approach in practice? *J Hum* Nutr 2023; Diet. 12. https://doi.org/10.1111/jh <u>n.13218</u>

Food Group/Nutrient	Willet et al (2019)	Broekema <i>et al</i> (2020)	Lassen et al (2020)
Whole grains	232	289	116
Tubers/starchy vegetables	50	109	100
Vegetables (all)	300	170	300
Dark green	100	65	100
Red/orange	100	38	100
Other	100	70	100
Fruit	200	99	300
Dairy	250	366	270
Cheese		3	20
Liquid dairy		363	250
Animal protein			
Red meat (beef/lamb)	7	0	15
Pork	7	10	13
Poultry	29	11	30
Eggs	13	17	15
Fish	28	48	30
Plant protein			
Legumes	50	23	100
Soy	25	5	
Nuts and seeds	50	91	46
Fat			
Unsaturated	40	10	
Saturated	12		
Sugar/confectionary	31	54	
High salt/fat foods		0	157
Alcoholic beverages		203	15/
Sugar sweetened beverages			
Other beverages loud) has received	funding from the European Union	Horizon 2020 Research 2/1602	ovation programme (H20 2000



How sustainable are current dietary guidelines for Ireland – the shape of things to come


M.C. Conway¹ and S.N. McCarthy¹

¹Department of Agrifood Business and Spatial Analysis, Teagasc Food Research Centre, Dublin, Ireland.

Changes in food intake (g/day) required from current levels to achieve guidelines

Changes in CO₂ (kg CO₂/day) if guidelines are achieved

Sustainability & Equity

Diet, BMI, Greenhouse Gas Emissions, Cost

Advances in Nutrition

AN INTERNATIONAL REVIEW JOURNAL

journal homepage: https://advances.nutrition.org/

Review

- Aligning Environmental Sustainability, Health Outcomes, and Affordability in Diet Quality: A Systematic Review
- Clarissa L. Leydon 1,2,*, Ursula M. Leonard 3, Sinéad N. McCarthy 2, Janas M. Harrington 1
 - ¹ Centre for Health and Diet Research, School of Public Health, University College Cork, Cork, Ireland; ² Department of Agrifood Business and Spatial Analysis, Teagasc Food Research Centre, Ashtown, Dublin, Ireland; ³ Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, University College Cork, Cork, Ireland

- Healthier diets can reduce environmental impact
- Incongruities between population and planetary health can occur
- Sustainability of dietary patterns depends on choice of indicator
- · Following lower impact patterns can increase cost, but be protective against risk of obesity

Accepted manuscript

Iodine and plant-based diets – a narrative review and calculation of iodine content

Published online by Cambridge University Press: 25 August 2023

Show author details >

- Using the EAT-Lancet reference diet
- 128 μg/day (85% of the adult recommendation of 150 μg/d
- 51-64% of the pregnancy recommendation of 200-250 μ g/d).
- Milk is replaced with unfortified plant-based alternatives,
- 54 μg/day (34% and 22-27% of the recommendations for adults and pregnancy, respectively.
- Plant-based dietary recommendations might **place consumers at risk of iodine deficiency,** without a fortification programme and where animal products provide the majority of iodine intake

Processing & Sustainability

Mulrooney et al (unpublished)

Meal Type	Healthy Plan	Unhealthy Plan	"Processed" Plant Based Plan	Less-"Processed" Plant Based Plan
Breakfast	Porridge with low-fat milk, raspberries and wholemeal/grain toast	White toast with butter, eggs, sausages, rashers, black pudding and tea with whole milk	Porridge with unsweetened soya milk, raspberries and wholemeal/grain toast	Porridge with unsweetened soya milk, raspberries and wholemeal/grain toast
Lunch	Egg, lettuce and tomato sandwich with low-fat yoghurt, oranges and water	Sandwich with butter and rashers, chocolate biscuits, sugar sweetened beverage (cola) and crisps	Vegetable burger sandwich with soya yoghurt and oranges	Tofu sandwich with soya yoghurt and oranges
Dinner	Pork and vegetable noodle stir fry and water	Roast beef, mashed potatoes, peas, carrots, tea with whole milk, and banoffee pie	Quorn pieces, carrots, mushrooms, and green beans stir fry with wholewheat noodles and water	Chickpea, carrot, green bean and mushroom stir fry with wholewheat noodles and water
Mid-morning snack	Pear and water	Milk chocolate and tea with whole milk	Pear and water	Pear and water

Mulrooney et al (unpublished)

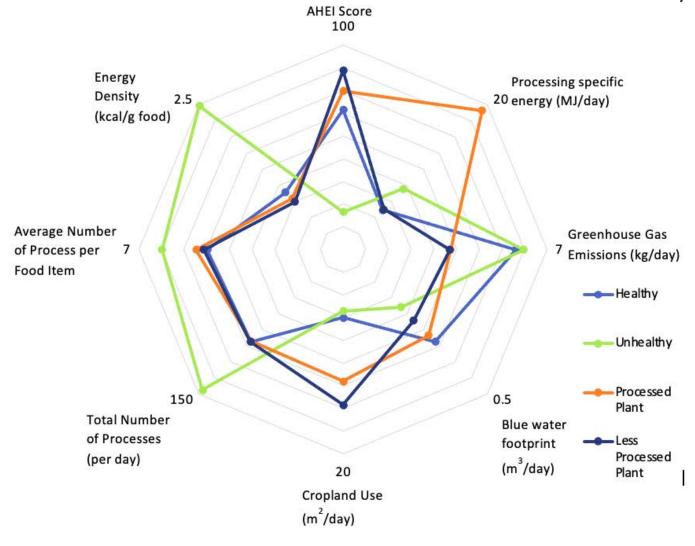


Figure 2. Radar plot displaying the four diets used in this study and their associated scores for the nutritional, processing, and environmental impact metrics.

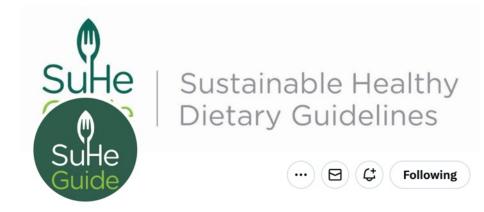
Challenges.....

SUSTAINABILITY,

PROCESSING,

NUTRIENT INADEQUACIES,

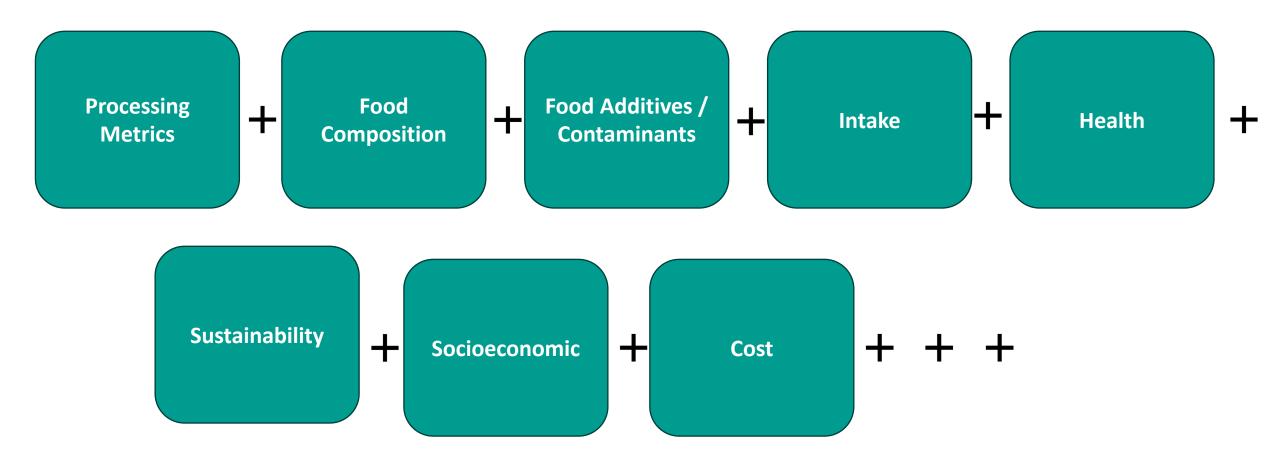
FOOD INSECURITY



Challenges.....

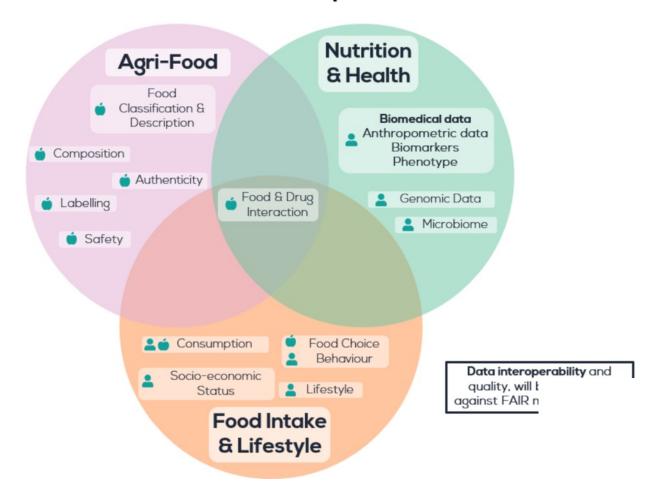
- Different metrics for sustainability different outcomes / conclusions
- Need to 'link' sustainability to food
 - food group,
 - vary region/country
- Need to link to socio-economic data
 - Cost
 - Acceptability
- Need evidence of modelled nutrient intakes / RCTs

@SusHealthyDiet


@sushealthydiet Follows you

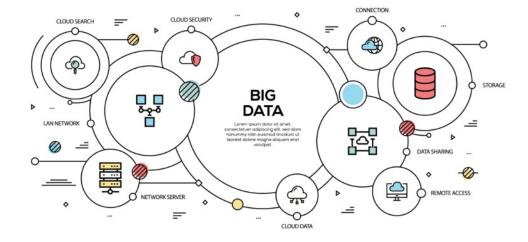
SuHe Guide: developing food-based dietary guidelines for sustainable and healthy lifestyles @teagasc, @UCDFoodHealth, @CPH_QUB, and @fnsucc

Data Fragmentation & Integration – FNS Cloud

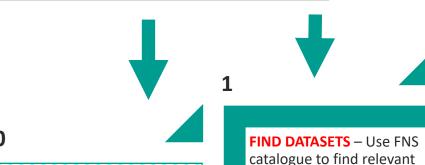


Food, Nutrition Security data

FNS-Cloud Topics



To support the use of data develop solutions



FNSCloud 'Nutrition Researcher' Journey

Assess factors which influence dietary patterns & adherence to sustainable healthy eating guidelines

Use existing data or find data to answer the research question

Determine if selected datasets are suitable for use in the specific research question
- Quality Framework

IDENTIFY potential datasets containing parameters of interest

OBTAIN access to datasets-FoodCASE and other data repositories, FNS catalogue, IP permissions

USE FNS tools & services to MERGE & HARMONISE datasets – FFQ mapping, StandFood, others?

search

datasets for the specific

research question – Catalogue

etc.

Existing datasets

Tools for collecting intake data

Home > Catalogues

Catalogues

Browse FNS Cloud Catalogues, containing information about datasets related to the topics of food, nutrition and security, e-tools like apps and software to manage and analyse data and services, that are provided by FNS Cloud or our verified partners.

Datasets

Search for datasets with data related to FNS topics. Cain access to the open data or contact data owners for access.

Explore available apps, software and algorithms to analyse, manage and visualise your

Data harmonization tools

Consumer apps

Final thoughts.....

- Challenges ahead
- Cannot be answered by one domain
- Quality datasets
- FAIR
- FNSCloud has some solutions..... but needs a community to use it!!

