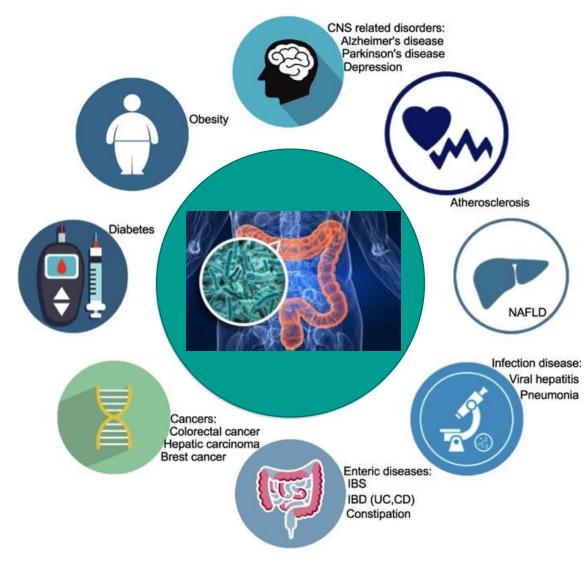
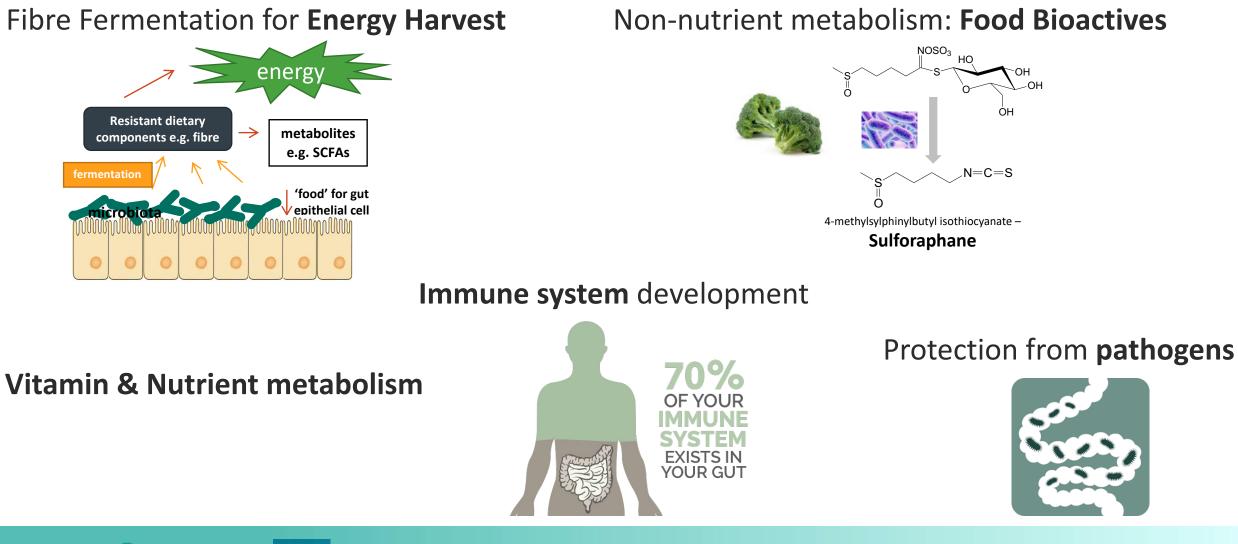

Making Diet & Microbiome data FAIR – The FNS-Cloud Diet & Microbiome DEMONSTRATOR

Maria Traka



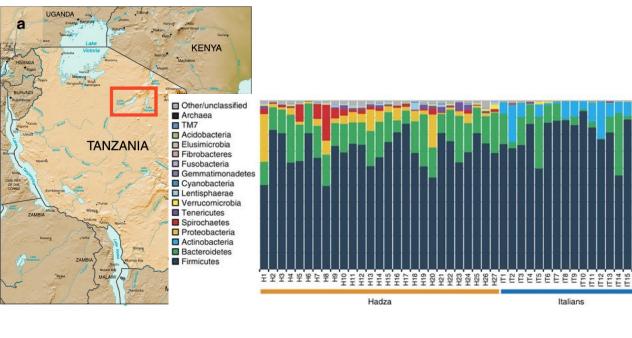
The human microbiota: we are home to highly diverse and dynamic microbial communities

Cloud

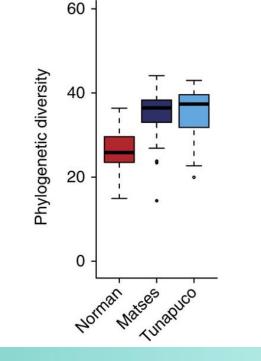

Gut Microbiota and Health

Cheng *et al.* (2020). J. Func. Foods, 74:104197

What do gut microbiota do?


IS

Cloud


Diet modifies gut microbiota

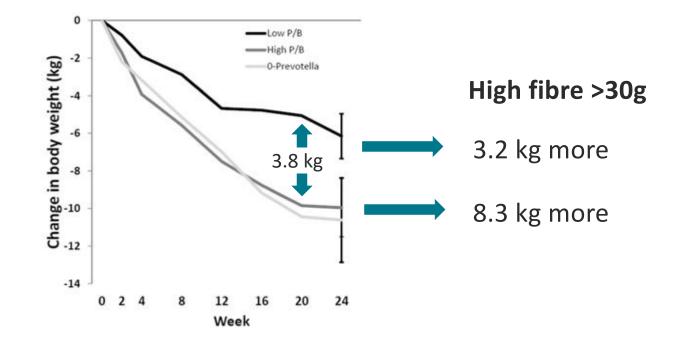
Hadza community of hunter-gatherers

- wild foods (meat, honey, baobab, berries and tubers)
- High fibre

- Matses | remote hunter-gatherer population from the Peruvian Amazon | tubers, plantain, fish, limited game
- Tunapuco | traditional agricultural community from the Andean highlands | stem tubers (potatoes, oka, mashua), fruit, meat
- Norman, Oklahoma, US | typical US urban-industrialized lifestyle | processed foods, bread and prepackaged meals

Matses and Tunapuco are enriched in genus *Treponema*, an efficient carbohydrate metaboliser

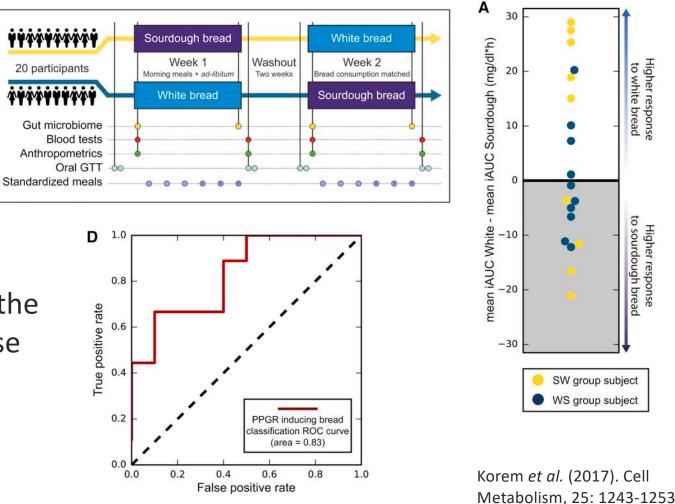
> Obregon-Tito *et al.* (2015). Nat Communications, 6:6505


Schnorr et al. (2014). Nat Communications, 5:3654

Evidence from human studies (RCTs) – Taxonomic information

Obese individuals stratified by **Prevotella-to-Bacteroides (P/B)** ratio (n=52) on low calorie diets (500 kcal/d) for 24w

- **Prevotella |** high CHO and fibre diets
- **Bacteroides** | high protein and animal fat

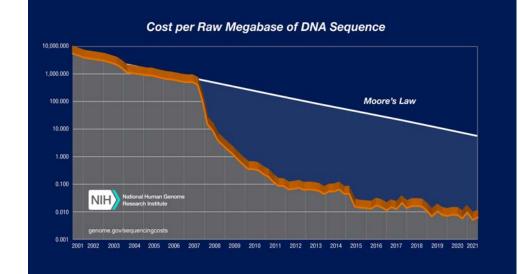

Hjorth et al. (2019). Int. J. Obesity, 43:149-157

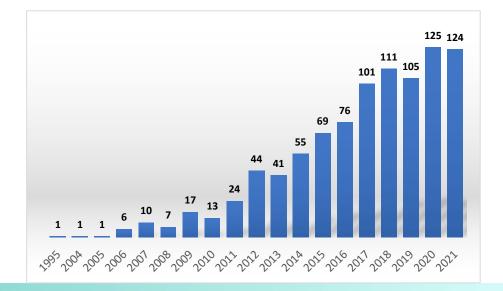
Using taxonomic AND functional information Not just what is present but what they are doing

In healthy (n=20) **no difference** in metabolic or clinical parameters

When only gut microbiota were used in a classification algorithm they could predict the bread that induced lower glycemic response

Dietary Intervention human studies (RCTs)

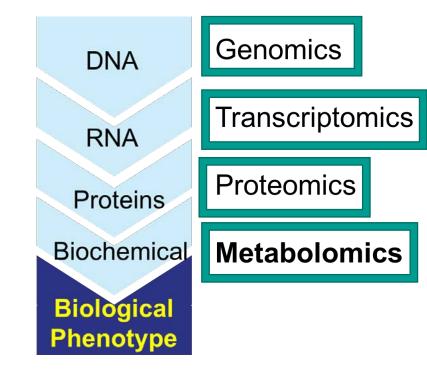




Diet and Microbiome

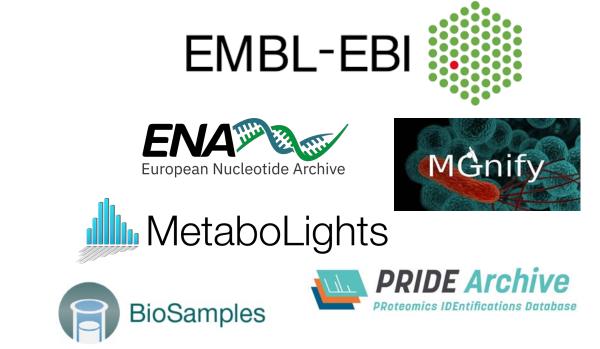
• As cost of sequencing goes down, more projects will incorporate microbiome analysis

• If we search 'diet AND microbiome' in clinical trials on PubMed.gov, we see an upward trend



Data generation

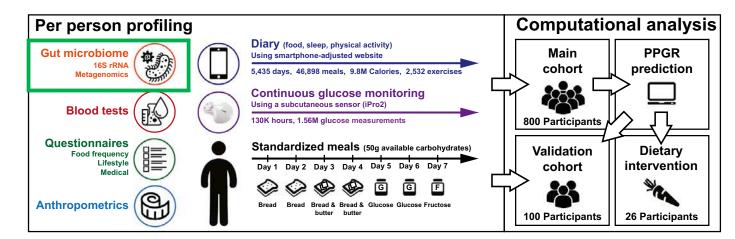
Data can be broken down into raw and processed data


- Dietary data
 - Food diaries/Surveys (raw) Records of what people ate
 - Nutrition composition (processed) How much protein is there?
- Microbiome data (raw files are large)
 - Metagenomics What bacteria/genes are there?
 - Metatranscriptomics What genes are being expressed?
 - Metaproteomics What proteins are present?
 - Metabolomics What small molecules are present?
- Health & Lifestyle data
 - Clinical data Blood biomarkers
 - Wearable Continuous blood glucose monitor, Sleep monitor

Data storage/Repositories

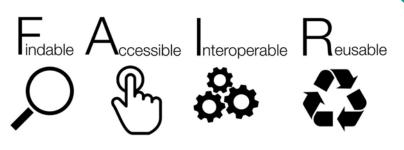
- EMBL-EBI
 - European Nucleotide Archive Raw sequencing read
 - MGnify Processed Metagenomics
 - MetaboLights Raw & Processed Metabolomics
 - PRIDE Archive Proteomics
 - BioSamples Metadata
- Nutritional Phenotype Database (dbNP)
 - Study and sample metadata Study design
 - Metabolomic markers Blood tests etc
- Dietary data
 - Food consumption
 - Nutrient intake data

There is no requirement for depositing data in a public repository


(except sequencing data)

Let's take an example

Personalized Nutrition by Prediction of Glycemic Responses


David Zeevi,^{1,2,8} Tal Korem,^{1,2,8} Niv Zmora,^{3,4,5,8} David Israeli,^{6,8} Daphna Rothschild,^{1,2} Adina Weinberger,^{1,2} Orly Ben-Yacov,^{1,2} Dar Lador,^{1,2} Tali Avnit-Sagi,^{1,2} Maya Lotan-Pompan,^{1,2} Jotham Suez,³ Jemal Ali Mahdi,³ Elad Matot,^{1,2} Gal Malka,^{1,2} Noa Kosower,^{1,2} Michal Rein,^{1,2} Gili Zilberman-Schapira,³ Lenka Dohnalová,³ Meirav Pevsner-Fischer,³ Rony Bikovsky,^{1,2} Zamir Halpern,^{5,7} Eran Elinav,^{3,9,*} and Eran Segal^{1,2,9,*} ¹Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel ²Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel ³Immunology Department, Weizmann Institute of Science, Rehovot 7610001, Israel ⁴Internal Medicine Department, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel ⁵Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel ⁶Day Care Unit and the Laboratory of Imaging and Brain Stimulation, Kfar Shaul Hospital, Jerusalem Center for Mental Health, Jerusalem 9106000, Israel ⁷Digestive Center, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel ⁸Co-first author ⁹Co-senior author

*Correspondence: eran.elinav@weizmann.ac.il (E.E.), eran.segal@weizmann.ac.il (E.S.) http://dx.doi.org/10.1016/j.cell.2015.11.001

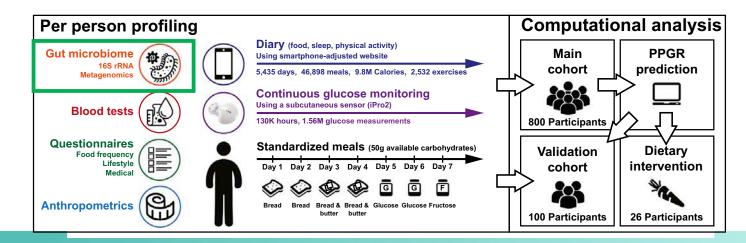
How FAIR is it?

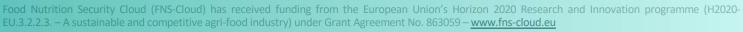
• Findable

- We can find the metagenomic reads
- No mention of other datasets

• Accessible

• We can retrieve metagenomics reads

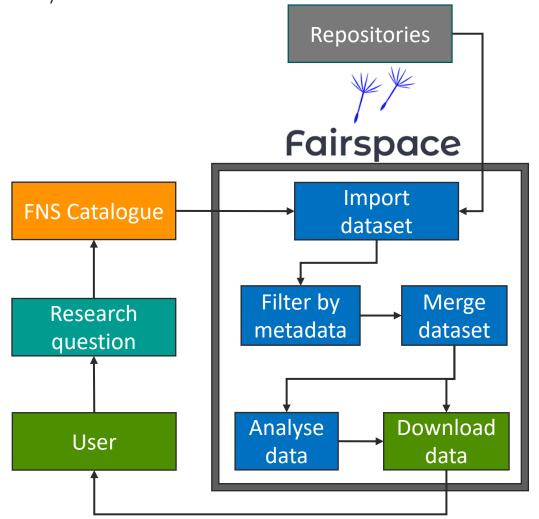

Cloud


• Interoperable

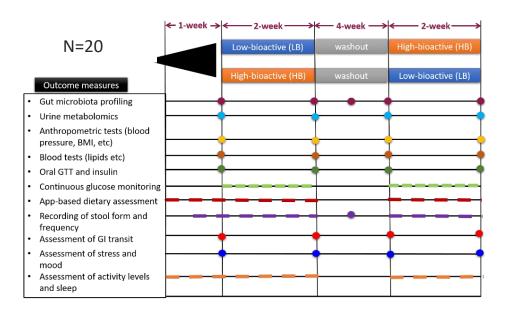
• Only interoperable after getting feature tables

Reusable

- No metadata provided
- Can only analyse metagenomic profiles



- FNS-Cloud aims to make the food & nutrition data FAIR
- How we envision it
 - 1. User has research question
 - 2. User finds relevant studies in FNS Catalogue
 - 3. Studies of interest are transferred into FAIRSPACE
 - 4. FAIRSPACE will pull data from repositories and link different datasets on a sample level
 - 5. FAIRSPACE will allow for filtering based on available metadata
 - 6. User can choose to analyse the data prior to downloading it for further analysis


FNS-Cloud DIME Study: <u>D</u>ietary B<u>/</u>oactives and <u>M</u>icrobiome DivErsity

DATA

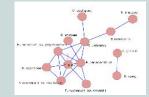
TOOLS

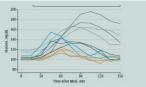
Objectives:

- Does a diverse diet rich in plant bioactive compounds lead to a diverse gut microbiome?
- Does our microbiome influence our metabolic response to food?

Food & Nutrition

Diet app tool development -wearables integration (sleep, CGM)


Weight, age, inflammation, HbA1c, TGs, hip/waist), etc. **Biomarker &** Anthropometric


Microbiome

Whole genome sequencing bacterial community composition and function

Bioinformatics tools on metagenomics and metabolomics integration

Machine learning dynamic algorithms for metabolic response to foods using microbiome

How will DIME help?

Link samples by BioSamples (generated by ENA)

Metagenomics	Metabolomics
Anthropometric data	Activity & Sleep tracker
Dietary intake	Continous blood glucose monitor
Blood test	Oral Glucose Tolerance Test
Stress & mood	Stool form & frequency

DIME

Demonstrator Use Cases

RESEARCH QUESTION 1: Does a diet rich in plant bioactives affect our gut microbiome, and how?

- demonstrate user pathway
- the metagenomics and metabolomics datasets and bioinformatic analytical pipelines (handling emerging metagenomics datasets for higher resolution microbial analysis e.g. long-read sequencing)

RESEARCH QUESTION 2: Does our baseline gut microbiome define how species composition shifts upon dietary interventions? Does dietary intervention lead to a similar reduction in strain persistence in independent cohorts?

• Finding, accessing and merging datasets from different diet & microbiome studies

RESEARCH QUESTION 3: Does our gut microbiome contribute to our metabolic response to foods? Can we predict metabolic responses to foods using microbiome data?

• How a user can access community-generated tools through FAIRSPACE (e.g. machine-learning classification tool for microbiome datasets)

- A lot of Diet & Microbiome studies are not FAIR
- FNS-Cloud attempts to solve this issue
- FNS catalogue will show well curated food & nutrition studies
- FAIRSPACE will fetch the data, filter, merge, and analyse the data
- DIME study will test the FNS-Cloud infrastructure through the microbiome demonstrator

Acknowledgements

Quadram Institute Bioscience

- Duncan Ng
- Federico Bernuzzi
- Falk Hildebrand
- Paul Finglas
- Maja Omjieljaniuk

The Hyve

Premotec

essner 🧖 PR

- Karl Pressner
- Joanna Czach
- Anna Żołynia

ScaleFocus

Anton Georgiev

Maastricht

University

Nikolay Vlaychev

University of Maastricht

- Susan Coort
- Chris Evelo

Duygu Dede Sener

University of Florence

- Giovanni Bacci
 - Duccio Cavalieri

Panče PanovTome Eftimov

Food Nutrition Security Cloud (FNS-Cloud) has received funding from the European Union's Horizon 2020 Research and Innovation programme (H2020-EU.3.2.2.3. – A sustainable and competitive agri-food industry) under Grant Agreement No. 863059 – <u>www.fns-cloud.eu</u>

The Hyve

- Elisa Cirllo
- Ewelina Grudzien
- Frank van den Berg
- Eelke van der Horst

Jozef Stefan Institute